首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2019-05-10
55
问题
设a
i
=[a
i1
,a
i2
,a
in
]
T
(i=l,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
,线性无关.已知β=[b
1
,b
2
,…,b
n
]
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设出k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0,要对此等式两边同时左乘β
T
恒等变形,证明k=0.再由α
1
,α
2
,…,α
r
线性无关,证明k
1
=k
2
=…=k
r
=0. 解一 因β是线性方程组AX=0的解,即Aβ=0,而A=[*],由Aβ=[*]β=0得 α
1
T
β=α
2
T
β=…=α
r
T
β=0,因而β
T
α
1
=β
T
α
2
=…=β
T
α
r
=0. 设 k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0. 左乘β
T
,利用β
T
α
i
=0(i=1,2,…,r)得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
+kβ
T
β=kβ
T
β=0, 但β≠0,所以β
T
β=b
1
2
+b
2
2
+…+b
n
2
>0,于是k=0.代入式①得k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0. 但α
1
,α
2
,…,α
r
线性无关,所以k
1
=k
2
=…=k
r
=0,故α
1
,α
2
,…,α
r
,β线性无关. 解二 反证法.若α
1
,α
2
,…,α
r
,β线性相关,则β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
,于是β
T
β=k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
=0,从而β=0,这与β是非零解向量矛盾,故α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/jWLRFFFM
0
考研数学二
相关试题推荐
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设向量组线性相关,但任意两个向量线性无关,求参数t.
随机试题
碳水化合物的生理作用是()。
易燃液体是指易燃的(),但不包括由于其他特性已列入其他类别的液体。
最易造成呼吸困难的间隙感染为
下列哪些文书可以作为民事执行根据?
下列各项中,应计入制造费用的有()。
学生是学校的主体,是具有能动性的教育对象。()
请简述投资回收期指标的优缺点。
Theprototypingmethodisadynamicdesignprocesses,whichrequirespeoplewhouseprototypingmethodtohavethefollowingcapabilityof______.
Themeaningsof"science"and"technology"havechangedsignificantlyfromonegenerationtoanother.Moresimilaritiesthandif
Americans’circleofcloseconfidantshasshrunkdramaticallyinthepasttwodecadesbutthenumberofpeoplewhosaythey【M1】_
最新回复
(
0
)