首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使=0.
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使=0.
admin
2021-11-09
30
问题
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使
=0.
选项
答案
令φ(χ)=f(χ)∫
χ
b
g(t)dt+g(χ)∫
a
χ
f(t)dt,φ(χ)在区间[a,b]上连续,在区间(a,b)内可导,且 φ′(χ)=[f′(χ)∫
χ
b
g(t)dt-f(χ)g(χ)]+[g(χ)f(χ)+g′(χ)∫
a
χ
f(t)df] =f′(χ)∫
χ
b
g(t)dt+g′(χ)∫
a
χ
f(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫
ξ
b
g(t)dt+g′(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g′(χ)<0,所以区间(a,b)内必有g(χ)>0, 从而就有∫
χ
b
g(t)dt>0, 于是有[*]=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/jVlRFFFM
0
考研数学二
相关试题推荐
设曲线y=a+χ-χ3,其中a<0.当χ>0时,该曲线在χ轴下方与y轴、χ轴所围成图形的面积和在χ轴上方与χ轴所围成图形的面积相等,求a.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域,记为A,B,它们有相等的面积,设C的方程是y=χ2,C1的方程是y=χ2,求曲线C2的方程.
=_______(其中a为常数).
设f(χ)连续,f(0)=0,f′(0)=1,求[∫-aaf(χ+a)dχ-∫-aaf(χ-a)dχ].
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B=。(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换;(Ⅱ)判断矩阵A与B是否合同,并说明理由。
“f(x)在点x=x。处有定义”是当x→x。时f(x)有极限的[],
极限的充要条件是()
随机试题
下列作品属于契诃夫的戏剧的是( )
WhenwethinkofcreativepeoplethenamesthatprobablyspringtomindarethoseofmensuchasLeonardodaVinci,AlbertEinst
女性,55岁。处于慢性肺心病心功能失代偿期,经一段时间治疗后,仍有中度水肿,血钾为2.5mmol/L。对该病人实施的护理措施错误的是
投标人以他人名义投标尚未构成犯罪的,对单位直接负责的主管人员和其他直接责任人员处( )的罚款。
能否对社会整体利益负责是衡量会计人员是否称职的基本标准。()
询价招标应作为政府采购的主要采购方式。()
情境化结构面试通常遵循所谓的“STAR”原则,其中T指的是()。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。就给定资料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻,有说服力。
简述赫尔巴特提出作为其教育理论的伦理学基础的五种道德观念。
FormanygiventaskinBritaintherearemorementhanareneeded.Strongunionskeepthemthere.InFleetStreet,homeofsome
最新回复
(
0
)