首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,...,n),任取ki﹥0(i=1,2,....n),证明:存在ε∈[a,b],使得 k1f(x1)+k2f(x2)+...knf(xn)=(k1+k2+...+kn)f(ε).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,...,n),任取ki﹥0(i=1,2,....n),证明:存在ε∈[a,b],使得 k1f(x1)+k2f(x2)+...knf(xn)=(k1+k2+...+kn)f(ε).
admin
2020-03-16
37
问题
设f(x)在[a,b]上连续,任取x
i
∈[a,b](i=1,2,...,n),任取k
i
﹥0(i=1,2,....n),证明:存在ε∈[a,b],使得
k
1
f(x
1
)+k
2
f(x
2
)+...k
n
f(x
n
)=(k
1
+k
2
+...+k
n
)f(ε).
选项
答案
因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M,显然有m≤f(x
i
)≤M(i=1,2,...,n) 注意到k
i
>0(i=1,2,...,n)所以有k
i
m≤k
i
f(x
i
)≤k
i
M(i=1,2,...,n), 同向不等式相加得, (k
1
+k
2
+...+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+...+k
n
f(x
n
)≤(k
1
+k
2
+...+k
n
)M, [*], 即k
1
f(x
1
)+k
2
f(x
2
)+...+k
n
f(x
n
)=(k
1
+k
2
+...+k
n
)f(ε).
解析
转载请注明原文地址:https://jikaoti.com/ti/jFtRFFFM
0
考研数学二
相关试题推荐
(92年)设f(x)=,求∫03(x-2)dx.
[*]
如图1—3—10,C1和C2分别是和y=ex的图象,过点(0,1)的曲线C3是一单凋增函数的图象.过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly.记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图彤的面积为S2(y).如
设f(x)是区间上的单调、可导函数,且满足,其中f-1是f的反函数,求f(x).
[2011年]一容器的内侧是由图1.3.5.14中曲线绕y轴旋转一周而成的曲面,该曲面由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成.若将容器内盛满的水从容器顶点全部抽出至少需要做多少功?(长度单位为m,重力加速度为g
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
求极限:
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
若n阶行列式中零元素的个数多于n2-n,则该行列式的值为________.
设行列式,则第四行元素余子式之和的值为______。
随机试题
处理头皮裂伤必须遵循的外科原则是
患者男性,25岁,系某大学的教师,从不饮酒。在一次聚餐会时饮白酒三两后,瘫在地上,此症状最可能为
男性,30岁,右膝内侧逐渐隆起伴隐痛半年。X线片示:右胫骨干骺端有一破坏区,边缘呈膨胀性改变,中央有肥皂泡样阴影。首先应考虑为
图示等腰直角三角形单元体,已知两直角边表示的截面上只有剪应力,且等于τ0,则底边表示的截面上的正应力σ和剪应力τ分别为:
对于管理系统有三种动力,人的工作动力来源于()。
国家统计局数据显示,2016年年末,全国规模以上中小工业企业(以下简称“中小企业”)37.0万户,比2015年年末增加0.5万户企业,其中,中型企业5.4万户,占中小企业户数的14.6%,小型企业31.6万户,占中小企业户数的85.4%。分地区看,东部
FromthefirstparagraphweknowthatadsinAmericaarevery______.Accordingtothe"discipline"or"traditionalvalues"them
Howmanypeoplelivedinextremepovertyinsub-SaharanAfricain1981?
InNovember1835,ababywasbornwhileHalley’sCometlitupthesky.ThebabygrewtobethegreatwriterMarkTwain.Beeauseh
Theywereshockednotsomuchbytheradicalismofyoungpeople______bytheirbadform.
最新回复
(
0
)