首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为( ).
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为( ).
admin
2019-08-27
37
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)
T
,则方程组A
*
x=0基础解系为( ).
选项
A、
B、
C、
D、
答案
C
解析
【思路探索】首先确定A的秩,进而确定A
*
的秩;利用A与A
*
的关系及已知条件即可判别.
由Ax=0的基础解系仅含有一个解向量知,R(A)=3,从而R(A
*
)=1,于是方程组A
*
x=0的基础解系中含有3个解向量.
又A
*
A=A
*
(α
1
,α
2
,α
3
,α
4
)=|A|E=O,所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
x=0的解.
因为(1,0,2,0)
T
是Ax=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关.从而,向量组α
1
,α
2
,α
3
与向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除(A)、(B)、(D)选项.
事实上,由α
1
+2α
3
=0,得α
1
=0x
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表示,又R(α
1
,α
2
,α
3
,α
4
)=3,所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
x=0的一个基础解系.
故应选(C).
转载请注明原文地址:https://jikaoti.com/ti/j8tRFFFM
0
考研数学二
相关试题推荐
设a,b,n都是常数,f(x)=arctanx-.已知存在,但不为零,求n的最大值及相应的a,b的值.
由方程2y3-2y2﹢2xy﹢y-x2=0确定的函数y=y(x)()
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx;(Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上题的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
设环境保持恒定温度20℃,有一个热物体在10秒内从温度为100℃降到60℃,问此物体从100℃降到25℃需要多少时间?
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。求矩阵A;
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)一阶连续可导,且f(0)=0,f’(0)=1,则=().
设f(x)可导,则当△x→0时,△y-dy是△x的().
求函数的导数:y=ef(x).f(ex),其中f(x)具有一阶导数.
随机试题
关于有线载波通信,下列说法中正确的是______。
排卵性月经来潮是由于
下面哪个不是诊断中颅底骨折的主要依据
射精管由________和________汇合而成。
下列属于水质物理性状指标的有
单纯滑膜结核,关节穿刺液外观是
A、扶正B、祛邪C、扶正与祛邪兼用D、先祛邪后扶正E、先扶正后祛邪适用于正虚邪实病证的治疗原则是()
下列关于刑事诉讼中程序公正含义的表述哪一项不正确?(2005—卷二—21,单)
根据《水法》,堤防工程的护堤地属于堤防工程的()范围。[2013年真题]
AmongthemorecolorfulcharactersofLeadville’sgoldenagewereH.A.W.Taborandhissecondwife,ElizabethMcCourt,betterk
最新回复
(
0
)