[2013年] 已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=______.

admin2019-05-22  32

问题 [2013年]  已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=______.

选项

答案y= c1e3x+c2ex-xe2x,其中c1,c2均为任意常数

解析 先由给出的3个解找出对应的齐次线性微分方程的两个线性无关的解.事实上,利用线性微分方程解的性质知,y1一y3=e3x,y2一y3=ex是对应的齐次线性微分方程的两个线性无关的解.因而该齐次微分方程的通解为Y=c1e3x+c2ex.又y3*=一xe2x显然为该非齐次线性微分方程的特解,则由常系数微分方程解的结构知,所求的通解为y=Y+y*=c1e3x+c2ex-xe2x,其中c1,c2均为任意常数.
转载请注明原文地址:https://jikaoti.com/ti/j8QRFFFM
0

最新回复(0)