首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量.且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量.且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
admin
2016-01-25
49
问题
已知A,B为三阶非零方阵,
为齐次线性方程组BX=0的3个解向量.且AX=β
3
有非零解.
(1)求a,b的值;
(2)求BX=0的通解.
选项
答案
(1)因B≠0,故r(B)≥1,因而BX=0的基础解系所含解向量的个数为 n一r(B)≤3—1=2个. 而β
1
,β
2
,β
3
均是BX=0的解,故β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0 解得a=3b.又AX=β
3
有非零解,即β
3
可由A的3个列向量 [*] 线性表示,由观察易看出 α
3
=3α
1
+2α
2
. 可见,β
3
可由α
1
,α
2
线性表示,因此β
3
,α
1
,α
2
线性相关,于是 |β
3
,α
1
,α
2
|=[*]=0, 解得b=5,从而a=15. (2)由题设r(B)≥1,于是3一r(B)≤2,又已知β
1
,β
2
为BX=0的两个线性无关的解,故3一r(B)≥2,所以3一r(B)=2,β
1
,β
2
即可作为BX=0的基础解系,故通解为 X=k
1
β
1
+k
2
β
2
(k
1
,k
2
为任意常数).
解析
因r(B)≥1,故β
1
,β
2
,β
3
必线性相关.又由AX=β
3
知,β
3
可表示为A的3个列向量的线性组.由这两个线性关系式可求出a,b.
转载请注明原文地址:https://jikaoti.com/ti/isNRFFFM
0
考研数学三
相关试题推荐
改革开放以来特别是党的十八大以来,我国着力解决与经济社会发展相伴而生的生态环境问题,生态文明建设取得显著成效。但我国生态环境保护依然任重道远,生态文明建设形势严峻复杂、不容乐观。生态文明建设是关系中华民族永续发展的千年大计,是一场涉及生产方式、生活方式、思
俗话说“人闲百病生”。医学研究证明,适度的紧张有益于健康激素的分泌,这种激素能增强身体的免疫力,抵御外界的不良刺激和疾病的侵袭。这说明()。
“二十四节气”形成于中国黄河流域,以观察该区域的天象、气温、降水和物候的时序变化为基准,是人们把握气候变化、安排农业生产的重要指南。不同地区、不同时代的人们对“二十四节气”进行了动态完善。这说明()。
恩格斯指出:“19世纪三大空想社会主义者的学说虽然含有十分虚幻和空想的性质,但他们终究是属于一切时代最伟大的智士之列的,他们天才地预示了我们现在已经科学地证明了其正确性的无数真理”。空想社会主义与科学社会主义的根本区别在于()。
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
两个无穷小之商是否必为无穷小?试举例说明可能出现的各种情况.
用比较审敛法判别下列级数的收敛性:
求下列复合函数的一阶偏导数(f是C(1)类函数):
设函数f(u)在(0,∞)内具有二阶导数,且
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
随机试题
庆大霉素可以与链霉素合用治疗泌尿系统感染。
A.消化道传播B.输血传播C.虫媒传播D.呼吸道传播E.直接接触传播甲型肝炎病毒(HAV)的主要传播途径是
学生群体促进或阻碍个体的因素有哪些?
如图A-6所示,()表示仪表连接管路。
发生在计划执行过程中的控制是【】
女性,30岁,婚后5年不孕,近6年开始痛经,进行性加重,曾做子宫输卵管碘油造影,提示双侧输卵管通而不畅。妇科睑查:阴道后穹隆扪及触痛结节,子宫大小正常,右附件扪及4cm×4cm×3cm大小不活动的囊性包块。为明确诊断,首选的检查应为( )
A、润肠通便B、活血C、温脾止泻摄唾D、安胎E、补肺气,定喘嗽锁阳除补肾阳,益精血外,又能()。
某城市热力管道工程,施工单位根据设计单位提供的平面控制网点和城市水准网点按照支线、支干线、主干线的次序进行了施工定线测量后,用纤维卷尺丈量定位固定支架、补偿器、阀门等的位置。在热力管道实施焊接前,根据焊接工艺试验结果编写了焊接工艺方案,并按该工艺方
教师在如何对待自己的职业和职责上,存在着四种不同的境界,其中______是我们应该大力肯定和倡扬的()
Thetwogirlslooksomuchalikethatwecanhardly______onefromtheother.
最新回复
(
0
)