首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
admin
2016-10-20
28
问题
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
选项
答案
设A的特征值是λ
1
,λ
2
,λ
3
,相应的特征向量是α
1
,α
2
,α
3
.因为α
1
,α
2
,α
3
已两两正交,将其单位化为γ
1
,γ
2
,γ
3
,则γ
1
,γ
2
,γ
3
仍是A的特征向量,且P=(γ
1
,γ
2
,γ
3
)是正交矩阵,并有 [*] 从而由A=PAP
-1
=PAP
T
,得A
T
=(PAP
T
)
T
=(P
T
)
T
A
T
P
T
=PAP
T
=A,即A是对称矩阵.
解析
非零正交向量组是线性无关的,故A有3个线性无关的特征向量,即A可以对角化,并且可以用正交变换化为对角形.
转载请注明原文地址:https://jikaoti.com/ti/ipxRFFFM
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设A是n×m矩阵,B是m×n矩阵,其中n
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
下列反常积分是否收敛?如果收敛求出它的值:
随机试题
《巴黎公约》规定,专利和商标的优先权期限分别为几个月()
有关过期妊娠的描述正确的是
比旋光度测定中的影响因素有
定量分析是指对可度量因素的分析方法,定量分析的主要因素有( )。
要约邀请是希望他人向自己发出要约的意思表示。下列各项属于要约邀请的有()。
根据下面资料回答96~100题2007年增长最快和最慢的两种产品,()。
森林与水血脉相依,森林作为陆地生态系统的主体和自然界功能最完善的资源库,具有调节气候、涵养水源、保持水土、防风固沙、改良土壤、减少污染等多种功能,对保护人类生态环境起着决定性和不可替代的作用。森林可以涵养水源。据专家研究.森林对降雨有着重新分配的作用,25
TCP协议为了解决端对端的流量控制,引入了()来解决。
2011年3月份日化厂A将一批原材料委托加工厂B加工成化妆品。委托加工合同上注明原材料成本为60万元,加工厂B代垫辅助材料8万元,日化厂A支付加工费5万元。加工收回后,日化厂A将其中的80%用于再加工,生产成W牌高级化妆品,并全部实现销售,取得含税收入11
WhatWilltheWomando?
最新回复
(
0
)