首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T. 求方程组(α2,α3,α4)x=α5的通解;
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T. 求方程组(α2,α3,α4)x=α5的通解;
admin
2016-03-05
55
问题
设线性非齐次方程组Ax=(α
1
,α
2
,α
3
,α
4
)x=α
5
有通解k(一1,2,0,3)
T
+(2,一3,1,5)
T
.
求方程组(α
2
,α
3
,α
4
)x=α
5
的通解;
选项
答案
根据题意,非齐次线性方程组(α
1
,α
2
,α
3
,α
4
)x=α
5
,有通解k(一1,2,0,3)
T
+(2,一3,1,5)
T
,则有r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,又由对应齐次线性方程组的通解得一α
1
+2α
2
+3α
4
=0,即α
1
=2α
2
+3α
4
.若α
2
,α
3
,α
4
线性相关,则r(α
1
,α
2
,α
3
,α
4
)<3,这和题设矛盾.故α
2
,α
3
,α
4
线性无关.由上述结论可知α
2
,α
3
,α
4
是α
1
,α
2
,α
3
,α
4
及α
1
,α
2
,α
3
,α
4
,α
5
的极大线性无关组,即α
1
,α
5
均可由α
2
,α
3
,α
4
线性表示,那么有r(α
2
,α
3
,α
4
)=r(α
1
,α
3
,α
4
,α
5
)=3.方程组 (α
2
,α
3
,α
4
)x=α
5
(1)有唯一解.根据题意,α
5
可由α
1
,α
2
,α
3
,α
4
线性表示,且表示方法不唯一,k可取任意值,取k=2,使α
5
由α
1
,α
2
,α
3
,α
4
线性表示时,不出现α
1
,则有α
5
=α
2
+α
3
+11α
4
.故方程组(1)的通解(唯一解)为x=(1,1,11)
T
解析
转载请注明原文地址:https://jikaoti.com/ti/iRDRFFFM
0
考研数学二
相关试题推荐
=________.
已知编号为1,2,3的3个袋中各有3个白球、2个黑球,从1,2号袋中各取一球放入3号袋中,则3号袋中自球数X的期望与方差分别为()
求极限.
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
已知f(x)在(-∞,+∞)内连续,且f[f(x)]=x,证明至少存在一点x0∈(-∞,+∞),使f(x0)=x0.
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数g(x)=在点x=0处().
设函数f(x)连续,则在下列函数中,必为偶函数的是().
求微分方程y”+2y’+2y=2e-xcos2的通解.
向量场μ(x,y,z)=xy2i+yezj+xln(1+z2)k在点P(1,1,0)处的散度divμ=________.
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
下列商标侵权行为中,属于间接侵权行为的是()
休克代偿期微循环的变化有哪些
最难治的弱视是
A.停用肾上腺皮质激素B.继续用肾上腺皮质激素C.恢复全量肾上腺皮质激素D.恢复半量肾上腺皮质激素E.禁用肾上腺皮质激素术前正在用肾上腺皮质激素者
关于髋关节前后位摄影的叙述,正确的是
“益火之源,以消阴翳”的治法适用于( )。
患者饱餐后上腹部持续疼痛1天。查体:上腹部压痛、反跳痛。应首先考虑的是
古语有云:“春耕、夏耘、秋收、冬藏,四者不失时,故五谷不绝,而百姓有余食也。”从哲学角度出发,这给我们的启示是()。
有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6。将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?()
HowtoNegotiateaJobOffer:SalaryNegotiationTipsAjobinterviewiscomprisedofseveralaspects.Oneofthemajoraspe
最新回复
(
0
)