首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB),证明:方程组BX=0与ABX=0是同解方程组。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB),证明:方程组BX=0与ABX=0是同解方程组。
admin
2021-11-25
36
问题
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB),证明:方程组BX=0与ABX=0是同解方程组。
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解,令r(B)=r,且ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,k
3
,…,k
n-r
,k
0
使得k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+...+k
n-r
ξ
n-r
+k
0
η
0
=0。 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+...+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
线性无关,所以k
1
,k
2
,k
3
,…,k
n-r
=0,从而ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解。
解析
转载请注明原文地址:https://jikaoti.com/ti/i0lRFFFM
0
考研数学二
相关试题推荐
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x))在[a,b]上可导;④f(x)在[a,b]上存在原函数.以P=>Q表示由性质P可推出性质Q,则有()
设f(x)连续,且,则().
考虑二元函数f(x,y)在点(x0,y0)处的下面四条性质:①连续②可微③fˊx(x0,y0)与fˊy(x0,y0)存在④fˊx(x,y)与fˊy(x,y)连续若用“PQ”表示可由性质P推出性质Q,则有(
设向量组,α1,α2……αr是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解.证明:向量组β,β+α1,β+α2,…,β+αr线性无关.
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为().
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
设A是n阶矩阵,α是n维列向量,若=r(A),则线性方程组()
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是()
设非齐次线性方程组Aχ=b有两个不同解,β1和β2其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Aχ=b的通解为【】
随机试题
A、choreB、chocolateC、archD、schoolD
急性化脓性阑尾炎的腹痛性质为
阳损及阴
(2016年)为落实淘汰落后产能政策,某区政府发布通告:凡在本通告附件所列名单中的企业两年内关闭。提前关闭或者积极配合的给予一定补贴,逾期不履行的强制关闭。关于通告的性质,下列哪一选项是正确的?
甲国A公司(卖方)与中国B公司采用FOB价格条件订立了一份货物买卖合同,约定货物保质期为交货后一年。B公司投保了平安险。货物在海运途中因天气恶劣部分损毁,另一部分完好交货,但在交货后半年左右出现质量问题。根据《联合国国际货物销售合同公约》和有关贸易惯例,下
某工程已具备竣工条件,承包人在提交竣工验收报告的同时,向发包人递交竣工结算报告及完整的结算资料。关于该工程竣工验收的质量责任等的说法,正确的有()。
因品质或者规格原因,出口货物自出口放行之日起1年内原状退货复运进境,纳税义务人在办理进口申报手续时,应当按照规定提交有关单证和证明文件,经海关确认后,对退运进境的原出口货物()。
我国基础货币由()构成。
某汉字的区位码是3720,它的国际码是
Sinceshedidnothavetimetoreadtheentireplaybeforeclass,shereadanoutlineoftheplotinstead.
最新回复
(
0
)