首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=2E+ATA.试证:当λ>0时,矩阵B为正定矩阵.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=2E+ATA.试证:当λ>0时,矩阵B为正定矩阵.
admin
2019-05-08
25
问题
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=2E+A
T
A.试证:当λ>0时,矩阵B为正定矩阵.
选项
答案
证一 下面证B为实对称矩阵,且对任意X≠0,有X
T
BX>0. 因B
T
=(λE+A
T
A)
T
=(λE)
T
+(A
T
A)
T
=λE+A
T
A=B,故B为n阶实对称矩阵.又对任意的n维向量X,有 X
T
BX=X
T
(λE+A
T
A)X=λX
T
X+X
T
A
T
AX=λX
T
X+(AX)
T
(AX). 当X≠0时,有X
T
X>0,(AX)
T
AX≥0,因此当λ>0时,对任意X≠0,有 X
T
BX=λX
T
X+(AX)
T
(AX)>0, 则B为正定矩阵. 证二 为证B正定,下证B的特征值全大于零.设μ为B的任意一特征值,X为对应的特征向量,则BX=μX,即 (λE+A
T
A)X=μX,亦即 λX+A
T
AX=μX (X≠0). 两边左乘X
T
,得到 λX
T
X+λX
T
A
T
AX=λX
T
X+λ(AX)
T
(AX)=μX
T
X. 因X≠0,故X
T
X>0.又λ>0(题设),故λX
T
X>0,而(AX)
T
AX≥0,从而λ(AX)
T
(AX)≥0,故 λX
T
X+λ(AX)
T
(AX)>0, 即 μX
T
X>0. 而X
T
X>0,故μ>0,即B的特征值全大于零,故B正定.
解析
转载请注明原文地址:https://jikaoti.com/ti/hZnRFFFM
0
考研数学三
相关试题推荐
求幂级数的和函数.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f’’(ξ)=0.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
设二维随机变量(X,Y)在xOy平面上由直线y=x与曲线y=x2所围成的区域上服从均匀分布,则P{0<x<=________。
设级数(an-an-1)收敛,且bn绝对收敛.证明:anbn绝对收敛.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,设β=,求αβ.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明:α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
设的一个基础解系为,写出的通解并说明理由.
设X1,X2,…,Xn为总体X的一个样本,已知EX=μ,DX=σ2<+∞,求和E(S2).
设且f和g具有连续偏导数,求和
随机试题
Robotsdifferfromautomaticmachinesin______aftercompletionofonespecifictask,theycanbereprogrammedtodoanotherone
求曲线y=2sinx+x2在横坐标x=0处的切线方程.
消渴的主要病机为
纳税人享受减税、免税待遇的,在减税、免税期间可以暂不办理纳税申报。()
非系统风险()。
每股收益最大化相对于利润最大化作为财务管理目标,其优点是()。
佛罗伦萨:意大利
一批人报考电影学院,其中,(1)有些考生通过了初试。(2)有些考生没有通过初试。(3)何梅与方宁没有通过初试。如果上述三个断定中只有一个为真,以下哪项关于这批考生的断定一定为真?
A、Giveherneighborsacallandmakeherrequests.B、Meetherneighborsandtellthemhertrouble.C、Reporttheincidenttothe
"Ithurtsmemorethanyou",and"Thisisforyourowngood."Thesearethe【C1】______mymotherusedtomakeyearsagowhenIhad
最新回复
(
0
)