首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x2)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x2)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
admin
2016-10-20
41
问题
已知二次型f(x
1
,x
2
,x
2
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(Ⅰ)二次型矩阵A=[*].二次型的秩为2,即二次型矩阵A的秩为2, 从而 |A|=[*]=-8a=0,解得a=0. (Ⅱ)当a=0时,A=[*],由特征多项式 |λE-A|=[*]=(λ-2)[(λ-1)
2
-1]=λ(λ-2)
2
, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0. 当λ=2时,由(2E-A)x=0,[*] 得特征向量α
1
=(1.1.0)
T
.α
2
=(0,0,1)
T
. 当λ=0时,由(0E-A)x=0,[*],得特征向量α
3
=(1,-1,0)
T
. 容易看出,α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: [*] (Ⅲ)由f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,得[*] 所以方程f(x
1
,x
2
,x
3
)=0的通解为:k(1,-1,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/hUxRFFFM
0
考研数学三
相关试题推荐
e2
[*]
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
某国经济可能面临三个问题:A1=“高通胀”,A2=“高失业”,A3=“低增长”,假设P(A1)=0.12,P(A2)=0.07,P(A3)=0.05,P(A1∪A2)-0.13,P(A1∪A3)=0.14,P(A2∪A3)=0.10,P(A1∩A2∩
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
试求正数λ的值,使得曲面xyz=λ与曲面在某一点相切.
设{an},{bn},{cn}均为非负数列,且则必有
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
随机试题
木通的功效冬葵子的功效
根据《宪法》和《地方组织法》规定,下列哪一选项是正确的?(2010年试卷一第22题)
某公路工程的A合同段承包人,在签订施工合同后按时进驻工地,经过一系列准备工作后已于1998年2月26日获得开工批准。但由于永久占地范围内的部分地面附着物未能及时拆迁,造成人员、机械停置持续时间近一个月。同年3月8日,承包人向总监理工程师提出索赔意向,并书面
下列选项中,符合《个人外汇管理办法实施细则》的有关规定的是()。
在MMPI的附加量表中,自我力量量表的低分特征包括()。
下列关于紧急优先权和紧急征用权的理解正确的有()。
一位著名企业家从百折不挠的拼搏经历中总结出了“冰淇淋哲学”,即卖冰淇淋必须从冬天开始,因为冬天顾客少,会逼迫你降低成本,改善服务。如果能在冬天生存,就再也不会害怕夏天的竞争。根据本段文字,“冰淇淋哲学”主要强调了:
根据以下资料,回答问题。2014年1—6月游戏产业数据报告指出,中国游戏用户数量4亿人,同比增长9.5%。2014年1—6月,中国游戏市场(包括网络游戏市场、移动游戏市场、单机游戏市场等)实际销售收入达到496.2亿元,同比增长46.4%。中国游
1947年4月,日本战后首次大选中,成为议会第一大党的是()。
“寻求理解是行为的基本动因”是哪种理论的基本假设?()。
最新回复
(
0
)