设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22一y32,又A*α=α,其中α=(1,1,一1)T. (I)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.

admin2020-06-20  36

问题 设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22一y32,又A*α=α,其中α=(1,1,一1)T
(I)求矩阵A;
(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.

选项

答案(I)显然A的特征值为λ1=2,λ2=一1,λ3=一1,|A|=2,伴随矩阵A*的特征值为μ1=1,μ2=一2,μ3=一2.由A*α=α得AA*α=Aα,即Aα=2α,即α=(1,1,一1)T是矩阵A的对应于特征值λ1=2的特征向量.令ξ=(x1,x2,x3)T为矩阵A的对应于特征值λ2=一1,λ3=一1的特征向量,因为A为实对称矩阵,所以αTξ=0,即x1+x2一x3=0,于是λ2=一1,λ3=一1对应的线性无关的特征向量为 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/hJaRFFFM
0

最新回复(0)