设随机变量X,Y相互独立,已知X在[0,1]上服从均匀分布,Y服从参数为1的指数分布.求 (Ⅰ)随机变量Z=2X+Y,的密度函数; (Ⅱ)Cov(Y,Z),并判断X与Z的独立性.

admin2019-02-26  28

问题 设随机变量X,Y相互独立,已知X在[0,1]上服从均匀分布,Y服从参数为1的指数分布.求
(Ⅰ)随机变量Z=2X+Y,的密度函数;
(Ⅱ)Cov(Y,Z),并判断X与Z的独立性.

选项

答案(X,Y)的联合密度 [*] (Ⅰ)分布函数法. FZ(z)=P{Z≤z}=P{2X+Y≤z}. 当z<0时,FZ(z)=0;当0≤z<2时,如图4.1, [*] [*] (Ⅱ)由于X,Y相互独立,所以Cov(X,y)=0. Cov(Y,Z)=Coy(Y,2X+Y)=2Cov(X,Y)+DY=0+1=1 由于Cov(X,Z)=Cov(X,2X+Y)=2DX+Cov(X,Y)=[*]≠0,所以X与Z不独立.

解析
转载请注明原文地址:https://jikaoti.com/ti/gxoRFFFM
0

最新回复(0)