首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
admin
2019-08-11
39
问题
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)
T
,k是任意常数,其中A是二次型f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ对应的矩阵,且r(A)=1.
(I)求方程组Aχ=0的通解.
(Ⅱ)求二次型f(χ
1
,χ
2
,χ
3
).
选项
答案
(Ⅰ)A是二次型的对应矩阵,故A
T
=A,由(2E-A)χ=0有通解χ=Kξ
1
=k(-1,1,1)
T
,知A有特征值λ
1
=2,且A的对应于λ
1
=2的线性无关的特征向量为ξ
1
=(-1,1,1)
T
. 由于r(A)=1,故知λ=0是A的二重特征值.Aχ=0的非零解向量即是A的对应于λ=0的特征向量. 设λ
2
=λ
3
=0所对应的特征向量为ξ=(χ
1
,χ
2
,χ
3
)
T
,由于实对称矩阵不同特征值对应的特征向量相互正交,故ξ与ξ
1
相互正交. 由ξ
1
T
ξ=-χ
1
+χ
2
+χ
3
=0,解得ξ
2
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
. 故方程组Aχ=0的通解为k
2
ξ
2
+k
3
ξ
3
,k
2
,k
3
为任意常数. (Ⅱ)求二次型即是求其对应矩阵. P=(ξ
1
,ξ
2
,ξ
3
)=[*]为可逆矩阵,且P
-1
=[*] 则[*] 故二次型为f(χ
1
,χ
2
,χ
3
)=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/glERFFFM
0
考研数学二
相关试题推荐
求微分方程满足条件y(0)=1,y′(1)=1的特解.
设若A,B等价,则参数t应满足条件______.
设f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)的某邻域内连续,则“φ(0,0)=0”是“f(x,y)在点(0,0)处可微”的()
()
______.
设当x∈[-1,1]时,f(x)连续,F(x)=∫-11|x-t|f(t)dt,x∈[-1,1].若f(x)为偶函数,证明F(x)也是偶函数;
设n为正整数,f(x)=xn+x-1.证明对于给定的n,f(x)在区间(0,+∞)内存在唯一的零点xn;
(04年)设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处
(07年)已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y—xey-1=1所确定,设z=f(lny—sinx),求
(18年)[arctan(x+1)一arctanx]=______.
随机试题
常温下,浓硝酸可以用铝槽贮存,说明铝与浓硝酸不反应。 ()
Tobeagoodteacher,youneedsomeofthegiftsofagoodactor;youmustbeableto【C1】______theattentionandinterestofyou
头晕头痛,心烦胸闷,口渴多饮,全身疲软,汗多,发热,面红,舌红苔黄,脉浮数。证属()。
行政机关实施行政许可和对行政许可事项进行监督检查:
人格决定一个人的生活方式,甚至决定一个人的命运,这是人格的()。
乒乓球在海上运输中属于易燃品,一日你处接到电话,一艘装运乒乓球的船舶失火。作为接警人员,你会怎么处理?
Thelocalpeoplewerejoyfullysurprisedtofindthepricesofvegetablesnolonger______accordingtotheweather.
下列Java布局管理器中,将容器按上北下南、左西右东,划分为东、南、西、北、中5部分的布局管理器是
软件设计中模块划分应遵循的准则是
A、Itempowersyoutomakedecisions.B、Itisnotbackedupwithenoughknowledge.C、Itimpressesyourbossandteammembers.D、I
最新回复
(
0
)