首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
admin
2018-04-14
47
问题
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
选项
答案
方法一:由麦克劳林公式得 f(x)=f(0)+f’(0)x+[*]f"(0)x
2
+[*]f"’(η)x
3
, 其中η介于0与x之间,x∈[-1,1]。分别令x=-1,x=1并结合已知条件得 f(-1)=f(0)+[*]f"’(η
1
)=0,-1<η
2
<0, f(1)=f(0)+[*]f"’(η
2
)=1,0<η
2
<1, 两式相减,得 f"’(η
2
)+f"’(η
1
)=6。 由f"’(x)的连续性,知f"’(x)在区间[η
1
,η
2
]上有最大值和最小值,设它们分别为M和m,则有 m≤1/2[f"’(η[2])+f"’(η
1
)]≤M。 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](-1,1),使 f"’(ξ)=1/2[f"’(η
2
)+f"’(η
1
)]=3。 方法二:构造函数φ(x),使得x∈[-1,1]时φ’(x)有三个零点,φ"(x)有两个零点,从而使用罗尔定理证明ξ必然存在。 设具有三阶连续导数φ(x)=f(x)+ax
3
+bx
2
+cx+d。令 [*] 再代入φ(x)得φ(x)=f(x)-[*]x
3
+[f(0)-[*]]x
2
-f(0)。 由罗尔定理可知,存在η
1
∈(-1,0),η
2
∈(0,1),使φ’(η
1
)=0,φ’(η
2
)=0,又因为φ’(0)=0,再由罗尔定理可知,存在ξ
1
∈(η
1
,0),ξ
2
∈(0,η
2
),使得φ"(ξ
1
)=0,φ"(ξ
2
)=0,再由罗尔定理知,存在ξ∈(ξ
1
,ξ
2
)[*](η
1
,η
2
)[*](-1,1),使 φ"’(ξ)=f"’(ξ)-3=0, 即f"’(ξ)=3。
解析
转载请注明原文地址:https://jikaoti.com/ti/gfdRFFFM
0
考研数学二
相关试题推荐
证明f(x)是以π为周期函数。
设f(x)是连续函数,F(x)是f(x)的原函数,则
求微分方程yy"+y’2=0满足初始条件y(1)=y’(1)=1的特解。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
利用求复合函数偏导的方法,得[*]
已知质点在时刻t的速度为v=3t-2,且t=0时距离s=5,求此质点的运动方程.
设,求f(x)的间断点并指出其类型.
证明:区间(a,b)内单调函数f(x)若有间断点,则它必为第一类间断点.
随机试题
标志中国延续两千余年封建帝制覆灭的事件是
全肺切除术后放置胸腔闭式引流管的目的是
一女患者,经断前后,阴道干涩,心悸怔忡,心烦不宁,失眠多梦,健忘,甚至精神失常,舌红苔少,脉细弦。证属
人身保险合同生效后,在下列哪些情况发生时,保险金可以作为被保险人的遗产处理:
下列人员禁止担任有限责任公司董事的是()
安全评价报告的载体一般采用文本形式,为适应信息处理、交流和资料存档的需要,报告可采用()。
建筑装饰装修工程施工管理过程中,注册建筑师签章文件代码为CN,下列说法正确的是()
yˊˊ-2yˊ-3y=e-x的通解为________
ArcheologyArcheology,thebranchofanthropologythatisdevotedtothestudyofthehumanpast,oftenfocusesontheperio
Astudyofarthistorymightbeagoodwaytolearnmoreaboutaculturethanispossibletolearningeneralhistoryclasses.
最新回复
(
0
)