首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若f(x),g(x)都是可微函数,且z≥a时,∣f′(x)∣≤g′(x),则当x≥a时,∣f(x)―f(a)∣≤g(x)―g(a).
证明:若f(x),g(x)都是可微函数,且z≥a时,∣f′(x)∣≤g′(x),则当x≥a时,∣f(x)―f(a)∣≤g(x)―g(a).
admin
2015-12-22
37
问题
证明:若f(x),g(x)都是可微函数,且z≥a时,∣f′(x)∣≤g′(x),则当x≥a时,∣f(x)―f(a)∣≤g(x)―g(a).
选项
答案
为证g(x)一g(a)≥f(x)一f(a),即证 g(x)一f(x)≥g(a)一f(a). 需作辅助函数φ(x)=g(x)一f(x),对φ(x)在[a,x]上使用拉格朗日中值定理.为证 一[g(x)一g(a)]≤f(x)一f(a), 即证 f(x)+g(x)≥f(a)+g(a). 需作辅助函数ψ(x)=f(x)+g(x),对ψ(x)在[a,x]上使用拉格朗日中值定理. 证 令φ(x)=g(x)一f(x),由拉格朗日中值定理得 φ(x)一φ(a)=φ′(ξ)(x一a), a<ξ<x. 当x≥a时,由于 ∣f′(x)∣≤g′(x), 则 一g′(x)≤f′(x)≤g′(x), 于是 φ′(ξ)=g′(ξ)一f′(ξ)≥0. 所以当x≥a时, φ(x)一φ(a)≥0, 即 g(x)一f(x)一[g(a)一f(a)]≥0, 则 g(x)一g(a)≥f(x)一f(a) (x≥a). ① 又令ψ(x)=g(x)+f(x),由拉格朗日中值定理得 ψ(x)一ψ(a)=ψ′(ξ)(x一a), a<ξ<x. 当x≥a时,由于 ∣f′(x)∣≤g′(x), 则 f′(x)+g′(x)≥0, 于是 ψ′(ξ)≥0. 故当x≥a时, ψ(x)一ψ(a)≥0, 即 g(x)+f(x)一[g(a)+f(a)]≥0. 所以,当x≥a时, g(x)一g(a)≥一[f(x)一f(a)], 即 f(x)一f(a)≥一[g(x)一g(a)]. ② 综合式①、式②得 ∣f(x)一f(a)∣≤g(x)一g(a).
解析
转载请注明原文地址:https://jikaoti.com/ti/gPriFFFM
0
考研数学二
相关试题推荐
关于以下历史知识,叙述正确的有()。
在我国古代,常把楼阁看做是神圣、尊贵和威严的象征,许多文学名篇由此诞生,而这些楼阁也因这些文章的流传而声名远扬。其中最有代表性的要数“江南三大名楼”,以下诗句旨在咏叹三大名楼的是()。
下列所描述的情形符合史实的是()。
挂在墙壁上的石英钟,当电能耗尽而停止走动时,其秒针往往会停在哪个数字上?()
A、 B、 C、 D、 A本题主要考查了图形样式的运算。第一组图形中,前两个图形白色区域求同得到第三个图形,依照此规律,所以选择A选项。
A、 B、 C、 D、 C前面四个图形的变化规律是依次遮挡的规律,与景物的种类没有关系,第一座山在树后面.第二、三座山分别在第一、二座山的后面,第五幅图新添的“景物”应在第三座山的后面,而只有C符合规律。故选
计算两次考试成绩(X、Y)的相关系数。
区间估计()
设f(χ)为单调函数,且g(χ)为其反函数,又设f(1=2),f′(1)=-,f〞(1)=1则g〞(2)=________.
已知A=.求A的特征值与特征向量,并指出A可以相似对角化的条件.
随机试题
常用的灭火方法有()、窒息法、隔离法三种。
产品定位
下列哪项所列情况不属于血管扩张药使用的适应证
症见往来寒热,口苦咽干,目眩,心烦喜呕。胸胁苦满,默默不欲饮食,脉弦。为
与铸铁散热器相比,钢制散热器的特点在于()。
下列关于承揽合同法律特征的表述中,正确的是()。
人的日常思维和行动,哪怕是极其微小的,都包含着有意识的主动行为,包含着某种创造性。而计算机的一切行为都是由预先编制的程序控制的,因此计算机永远不能拥有人所具有的主动性和创造性。下面哪一项将对题干中的推理的构成严重质疑?()
Jealousy’sPurposeGoodmorning,everyone.Today’slecturewillfocusonacommonpsychologicalproblem—jealousy.Evolutionar
Thehumannoseisanunderratedtool.Humansareoftenthoughttobeinsensitivesmellerscomparedwithanimals,butthisislar
馆藏(collections)丰富的高校博物馆(universitymuseum)无疑是一座“宝藏”。但令人遗憾的是,这座宝藏一直很少受到关注。最近,北京的一些高校公开表示将向公众免费开放校内博物馆。这一举动为学术馆藏走近普通大众提供了一个良好的开端。但
最新回复
(
0
)