假设D是矩阵A的,r阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0. 【 】

admin2021-01-25  48

问题 假设D是矩阵A的,r阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0.    【    】

选项

答案“是”.

解析 证  在题设条件下可以证明A的秩为r,故A中一切r+1阶子式都为0.
    证明A的秩为r的方法不是唯一的,下面利用“初等变换不改变矩阵的秩”来证明A的秩为r,设A= (αij)m×n满足题设条件,不失一般性,设r<m≤n,并设A的非零的r阶子式D位于A的左上角,即
   
由题设,A的左上角的r+1阶子式(它含D)
   
故Dr+1的行向量组线性相关,而Dr+1的前r行线性无关,所以Dr+1的第r+1行可由前r行线性表示.因此,通过把A的前r行的适当倍数加到A的第r+1行,就可把A化成
   
由行列式的性质知上面化成矩阵的前r+1行中的一切r+1阶子式都是A的相应子式.因此前r+1行中含D的子式都为0,于是有α′r+1,r+1=…α′r+1,n=0,即经上述初等变换已将A的第r+1行化成了零行,同理可通过初等行变换将A的第r+2,…,第m行都化成零行,即经若干次初等行变换可将A化成
     由于D≠0,故B中非零子式的最高阶数为r,即B的秩为r,故A的秩为r.
本题主要考查矩阵的秩的概念.注意证明中利用了“对于方阵P,∣P∣≠0<=>P的行(列)向量组线性无关;换句话说就是:∣P∣=0甘P的行(列)向量组线性相关”.
转载请注明原文地址:https://jikaoti.com/ti/gEaRFFFM
0

最新回复(0)