首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型χTAχ的秩为2,且 求此二次型的表达式,并求正交变换χ=Qy化二次型为标准形.
已知三元二次型χTAχ的秩为2,且 求此二次型的表达式,并求正交变换χ=Qy化二次型为标准形.
admin
2016-05-09
21
问题
已知三元二次型χ
T
Aχ的秩为2,且
求此二次型的表达式,并求正交变换χ=Qy化二次型为标准形.
选项
答案
二次型χ
T
Aχ的秩为2,即r(A)=2,所以λ=0是A的特征值. [*] 所以3是A的特征值,(1,2,1)
T
是与3对应的特征向量;-1也是A的特征值,(1,-1,1)
T
是与-1对应的特征向量. 因为实对称矩阵禾同特征值的特征向量相互正交,设λ=0的特征向量是(χ
1
,χ
2
,χ
3
)
T
,则有 [*] 由方程组[*]解出λ=0的特征向量是(1,0,-1)
T
. [*] 因此,χAχ=[*](χ
1
2
+10χ
2
2
+χ
3
2
+16χ
1
χ
2
+2χ
1
χ
3
+16χ
2
χ
3
), 令[*] 则经正交坐标变换χ=Qy,有χ
T
Aχ=y
T
∧y=3y
1
2
-y
3
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/g2PRFFFM
0
考研数学一
相关试题推荐
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设y1(χ),y2(χ)是微分方程y〞+py′+qy=0的解,则由y1(χ),y2(χ)能构成方程通解的充分条件是().
设A是n阶反对称矩阵,(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
设f(x)在(-∞,+∞)内连续,n为正整数证明:∫0nπxf(|sinx|)dx=nπ/2∫0nπf(|sinx|)dx
设函数y=y(x)由方程x=dx确定,则=________
已知3阶实对称矩阵A与B=合同,则二次型xTAx的规范形为()
A是三阶矩阵,三维列向量组β1,β2,β3线性无关,满足Aβ1=β2+β3,Aβ2=β1+β3,Aβ3=β1+β2,求|A|.
设一个4元非齐次线性方程组的通解为k1(一1,3,2,1)T+k2(2,一3,2,1)T+(1,2,1,一1)T,其中k1,k2为任意常数,求该4元非齐次线性方程组.
随机试题
对公共建筑内的避难走道进行设计,下列可仅在前室设置机械加压还风系统的有()。
下列不属于计算机病毒特征的是____________。
按引起烧伤的原因分类,下列哪项是错误的
男性,38岁,上腹部疼痛6年,多发生于餐前半小时,伴有反酸、嗳气,服用抗酸剂后疼痛可缓解。可疑急性肠炎时,应首先进行哪种检查
有利于腹膜炎渗液流至盆腔,减少毒素吸收的护理措施是
氢氯噻嗪属于
1999年张某在某市开设了三家名称各异的房地产经纪门店,到2002年门店数量已经达到15家。2004年张某决定:①把门店的名称和标志统一,管理统一,名称定为甲经纪机构;②大量招聘新员工;③在未来10年里,大量兼并其他经纪机构,实现企业规模的快速扩张;④建立
对组织在一定时期内的人力资源需求和供给做出预测,根据预测的结果制定出平衡供需的计划。这是()。
【程序说明】程序功能是若输入的N值为5,则输出结果如下:1111211331146
建立一个稳固的家庭不公可以为未来的成功打下基础,而且会赋予生活列深刻的意义。(notonly...but)
最新回复
(
0
)