首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(1)为 而已知另一4元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. (1)求方程组(1)的一个基础解系; (2)当a为何值时,方程组(1)与
设4元齐次线性方程组(1)为 而已知另一4元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. (1)求方程组(1)的一个基础解系; (2)当a为何值时,方程组(1)与
admin
2016-05-09
52
问题
设4元齐次线性方程组(1)为
而已知另一4元齐次线性方程组(2)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
(1)求方程组(1)的一个基础解系;
(2)当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非零公共解.
选项
答案
(1)对方程组(1)的系数矩阵作初等行变换,有 [*] 由于n-r(A)=4-2=2,基础解系由2个线性无关的解向量所构成,取χ
3
,χ
4
为自由变量,得β
1
=(5,-3,1,0)
T
,β
2
=(-3,2,0,1)
T
是方程组(1)的基础解系. (2)设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数. 由k
1
β
1
+k
2
β
2
-l
1
α
1
-l
2
α
2
=0,得齐次方程组(3) [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠-1时,则(3)[*]那么方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意. 当a=-1时,方程组(3)同解变形为[*]解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
.于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
. 所以当a=-1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,-1,1,1)
T
+l
2
(-1,2,4,7)
T
,l
1
,l
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/g1PRFFFM
0
考研数学一
相关试题推荐
[*]
由fˊ(x)=g(x),gˊ(x)=2ex-f(x),得f〞(x)=2ex-f(x)[*]
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设φ(x)在[0,+∞)上连续,且φ(x)-1,微分方程y’+y=φ(x)在[0,+∞)上的任一个解为y(x),则y(x)()
设f(x,y)为连续函数,且f(x,y)=,则f(x,y)=__________.
利用变量替换u=x,v=y/x,可将方程化成新方程为().
若f(u)为连续函数,L为光滑的封闭曲线,则∮Lf(x2+y2)(xdx+ydy)=().
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
(2006年试题,18)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
随机试题
A.清热凉血B.养阴生津C.两者均是D.两者均非(1991年第109,110题)生地的功效是()(
检察院以涉嫌诈骗罪对某甲提起公诉。经法庭审理,法院认定,某甲的行为属于刑法规定的“将代为保管的他人财物非法占为己有并拒不退还”的侵占行为。对于本案,检察院拒不撤回起诉时,法院的哪种处理方法是正确的?(卷二真题试卷第36题)
“骄恣纵欲”体现了
左前分支阻滞的心电图特点是
CT扫描时Χ线管发出的是
下列材料中抗拉强度最大的是()。
出清价格是指()。
2011年我国全年货物进出口总额36421亿美元,比上年增长22.5%。其中,出口18986亿美元,增加20.3%;进口17435亿美元,增长24.9%。进出口差额(出口值与进口值差额的绝对值)1551亿美元,比上年减少265亿美元。2007~201
下列文学作品,属于唐传奇的是()。
KellySortinohadatoughtimerecallingwhatshe’daccomplishedattheendofeachbusyworkday.Herjobasheadoftheupper
最新回复
(
0
)