首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,现矩阵A满足方程Ax=b,其中x=(x1,…,xn)T,b=(1,0,…,0)。 (Ⅰ)求证|A|=(n+1)an; (Ⅱ)a为何值,方程组有唯一解,并求x1; (Ⅲ)a为何值,方程组有无穷多解,并求通解。
设矩阵A=,现矩阵A满足方程Ax=b,其中x=(x1,…,xn)T,b=(1,0,…,0)。 (Ⅰ)求证|A|=(n+1)an; (Ⅱ)a为何值,方程组有唯一解,并求x1; (Ⅲ)a为何值,方程组有无穷多解,并求通解。
admin
2019-06-25
34
问题
设矩阵A=
,现矩阵A满足方程Ax=b,其中x=(x
1
,…,x
n
)
T
,b=(1,0,…,0)。
(Ⅰ)求证|A|=(n+1)a
n
;
(Ⅱ)a为何值,方程组有唯一解,并求x
1
;
(Ⅲ)a为何值,方程组有无穷多解,并求通解。
选项
答案
(Ⅰ)方法一: [*] =(n+1)a
n
。 方法二:记D
n
=|A|,下面用数学归纳法证明D
n
=(n+1)a
n
。 当n=1时,D
1
=2a,结论成立。 当n=2时,D
2
=[*]=3a
2
,结论成立。 假设结论对小于n一1阶行列式的情况成立。将D
n
按第一行展开得 D
n
=2aD
n-2
一[*] =2aD
n-1
一a
2
D
n-2
=2ana
n-1
一a
2
(n—1)a
n-2
=(n+1)a
n
, 故|A|=(n+1)a
n
。 方法三:记D
n
=|A|,将其按第一列展开得D
n
=2aD
n-1
一a
2
D
n-2
。所以 D
n
一aD
n-1
=aD
n-1
—a
2
D
n-2
=a(D
n-1
一aD
n-2
) =a
2
(D
n-2
一aD
n-3
)=…=a
n-2
(D
2
一aD
1
)=a
n
。 即有 D
n
=a
n
+aD
n-1
=a
n
+a(a
n-1
+aD
n-2
)=2a
n
+a
2
D
n-2
=…=(n一2)a
n
+a
n-2
D
2
=(n—1)a
n
+a
n-1
D
1
=(n一1)a
n
+a
n-1
.2a=(n+1)a
n
。 (Ⅱ)因为方程组有唯一解,所以由Ax=b知|A|≠0,又|A|=(n+1)a
n
,故a≠0。 根据克拉默法则,将D
n
的第一列换成b,得行列式为 [*] (Ⅲ)方程组有无穷多解,由|A|=0,得a=0,则方程组Ax=b为 [*] 此时,方程组系数矩阵的秩和增广矩阵的秩均为n一1,所以方程组有无穷多解,其通解为 k(1,0,0,…,0)
T
+(0,1,0,…,0)
T
,k为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/fxnRFFFM
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的泊松分布,令Y=4X一3,则E(y)=_________,D(Y)=___________,
设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=则A,B,C都不发生的概率为_____________.
曲线的渐近线有().
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设f(x)在区间[0,1]上可导,证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
求其中D是由L:与x轴围成的区域.
连续函数f(x)满足则f(x)=__________.
求微分方程x2y′+xy=y2满足初始条件y(1)=1的特解.
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
随机试题
设向量α1=(1,-1,2)T与α2=(4,0,k)T正交,则数k=_______.
心源性脑栓塞多发生在
X线与物质的作用中,不产生电离过程的是
下列选项中,关于肺实变的体征描述。不正确的是
A、地机B、养老C、外丘D、郄门E、梁丘手太阳小肠经的郄穴是
X公司对固定资产进行的下列会计处理中,注册会计师应当建议调整的是()。
现代教育主要是通过()来实现。
《××区人社局关于撤销辖区××社保所的请示》属于()。
通往理想彼岸的桥梁是
OnWednesday,Sept.23,PresidentBarackObamausedhisfirst-everaddresstotheU.N.GeneralAssemblytotryandreversethei
最新回复
(
0
)