首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(01年)设矩阵,已知线性方程组AX=β有解但不惟一,试求 (1)a的值; (2)正交矩阵Q,使QTAQ为对角矩阵.
(01年)设矩阵,已知线性方程组AX=β有解但不惟一,试求 (1)a的值; (2)正交矩阵Q,使QTAQ为对角矩阵.
admin
2021-01-25
50
问题
(01年)设矩阵
,已知线性方程组AX=β有解但不惟一,试求
(1)a的值;
(2)正交矩阵Q,使Q
T
AQ为对角矩阵.
选项
答案
(1)对方程组的增广矩阵[*]作初等行变换: [*] 由此可见 1)当a≠1且a≠-2时,r(A)=r([*])=3,方程组有惟一解; 2)当a=1时,r(A)=1,r([*])=2,方程组无解; 3)当a=-2时,r(A)=r([*])=2<3,方程组有无穷多解. 故a=-2满足题设条件. (2)由(1)知A=[*] 由|λE-A|=[*]=λ(λ-3)(λ+3)=0 得A的特征值为λ
1
=0,λ
2
=3,λ
3
=-3. 对于λ
1
=0,解方程组(0E-A)X=0,由 [*] 得对应的特征向量为α
1
=(1,1,1)
T
,单位化,得对应的单位特征向量为e
1
=[*]. 对于λ
2
=3,解方程组(3E-A)X=0,由 [*] 得对应的特征向量为α
2
=(1,0,-1)
T
.单位化,得对应的单位特征向量为e
2
=[*]. 对于特征值-3,解方程组(-3E-A)X=0,由 [*] 得对应的特征向量为e
3
=(1,-2,1)
t
,单位化,得对应的单位特征向量为e=[*]. 故所求的正交矩阵为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/ftaRFFFM
0
考研数学三
相关试题推荐
[2012年]设X1,X2,X3,X4为来自总体N(1,σ2)(σ>0)的简单随机样本,则统计量的分布为().
[2009年]设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布P(Y=0)=P(Y=1)=1/2.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点的个数为().
[2003年]设随机变量X的概率密度为F(x)是X的分布函数,求随机变量Y=F(X)的分布函数.
[2005年]设行向量组[2,1,1,1],[2,1,a,a],[3,2,1,a],[4,3,2,1]线性相关,且a≠1,则a=___________.
假设随机变量X与Y同分布,X的概率密度为已知事件A={X>a}和B={Y>a}独立,且P(A+B)=3/4,求常数a;
求下列函数的导数:(1)y=(3x2+1)3;(2)y=e-x2+x+1;(3)y=sin(4x+5);(4)y=cosx2;
设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是().
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求(1)未知参数θ的最大似然估计量;(2)未知参数θ的矩估计量;(3)当样本值为1,1,2,1,3,2
曲线y=lnx上与直线x+y=1垂直的切线方程为_____.
设X1,X2,…,Xn相互独立,且Xi(i=1,2,…)服从参数为λ(>0)的泊松分布,则下列选项正确的是()
随机试题
函数y=(ex+e-x)在区间(-1,1)内()
半污染区:
关于宫颈癌的早期发现与预防,下列措施错误的是
关于化学发光免疫分析的优点下列说法不正确的是
一钻孔灌注桩,桩径d=0.8m,长l0=10m。穿过软土层,桩端持力层为砾石。如题15图所示,地下水位在地面下1.5m,地下水位以上软黏土的天然重度γ=17.1kN/m3,地下水位以下它的浮重度γ’=9.4kN/m3。现在桩顶四周地面大面积填土,填土荷重p
下列关于资产评估报告书摘要与资产评估报告书正文二者关系的表述正确的是( )。
()的特点是在开放后投资者随时可以按基金单位净值申购和赎回,因此其营销是一个持续的过程。
影响个体身心发展的因素有()
下列选项中,属于明朝法律形式的有
在设计程序时,应采纳的原则之一是______。
最新回复
(
0
)