首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
admin
2019-01-19
40
问题
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
选项
答案
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是 A
n
α=λ
n
α。用α右乘A
4
+2A
3
+A
2
+2A=O,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2。 由于实对称矩阵必可相似对角化,且秩r(A)=r(Λ)=2,所以A的特征值是0,一2,一2。 因A相似于Λ,则有A+E与Λ+E=[*]相似,所以r(A+E)=r(Λ+E)=3。
解析
转载请注明原文地址:https://jikaoti.com/ti/fbBRFFFM
0
考研数学三
相关试题推荐
计算二重积分=_______,其中D是由直线y=2,y=χ和双曲线χy=1所围成的平面区域.
设yt=t2+3,则△2yt=_______.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
曲线2χ2-χy+4yy=1的名称是_______.
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
求极限
设随机变量X与Y相互独立,且X服从区间(0,1)上的均匀分布,Y服从参数为1的指数分布.(I)求概率P{X+Y≤1);(Ⅱ)令求Z的概率密度fZ(z).
设二维随机变量的联合概率密度为(I)求常数k;(Ⅱ)求关于X,Y的边缘概率密度fX(x),fY(y),并问X与Y是否独立?(Ⅲ)计算P{X+Y≤1};(Ⅳ)求Z=Y—X的概率密度.
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵A=,求线性方程组Ax=b有解的概率.
随机试题
在一个烟雾弥漫的早晨,农夫老张划着船逆流而上。突然间,他看见一条小船顺流直冲向他。眼看小船就要撞上他,他高声大叫:“小心!小心!”但是船还是直撞过来,他的船严重受损。于是他暴跳如雷,开始向对方怒吼。但是,当他仔细一瞧,才发现原来是条空船,因此气也消了。谈谈
反馈应该()
Newspapers,alongwithreportingthenews,instruct,entertain,andgiveopinions.Animportantwayforreadingalarge,big-cit
下列哪几项有助于确诊克罗恩病()
下列选项中,与扁平苔藓发病无关的因素是
市、县主干道两侧建筑面积()以上或工期一年以上的工程,施工现场的路、作业场地要采用混凝土硬化。
某DN100的输送常温液体的管道,在安装完毕后应做的后续辅助工作为()。
代表新诗创作时期最高成就的是郭沫若的《女神》。()
新中国成立后,随着土改基本完成,我国社会主要矛盾是()
YouwillhearaninterviewonCEORobertMcDonald,talkingaboutthenatureandprogressofthecompany’sdigitisationinitiativ
最新回复
(
0
)