设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a,b,c的值,使该图形绕x轴旋转一周所得立体的体积最小。

admin2018-12-19  53

问题 设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a,b,c的值,使该图形绕x轴旋转一周所得立体的体积最小。

选项

答案已知该曲线过原点,因而c=0,又当0≤x≤1时,y≥0,可知a<0,a+b≥0,于是该曲线在0≤x≤1上与x轴所围成的面积为 ∫01(ax2+bx)dx=[*] 即[*]。 该图形绕x轴旋转一周所得立体的体积为 V=∫01πy2dx=∫01π(ax2+bx2)dx=[*] 把[*]代入上式可得 [*] 则由 [*] 可知,要使该图形绕x轴旋转一周所得立体的体积最小,a,b的值应分别是[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/ezWRFFFM
0

最新回复(0)