首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
admin
2018-05-22
38
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://jikaoti.com/ti/e3dRFFFM
0
考研数学二
相关试题推荐
矩阵的非零特征值是_______.
设.(1)证明f(x)是以π为周期的周期函数;(2)求f(x)的值域.
设m,n是正整数,则反常积分的收敛性
设4维向量组α=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4性相关时,求其一个极大线性无关组,并将其余向量用该
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时,(1)β可由3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1,α
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,求矩阵A;
(1996年)设函数f(χ)=(1)写出f(χ)的反函数g(χ)的表达式;(2)g(χ)是否有间断点、不可导点,若有,指出这些点.
随机试题
小强是大学三年级的男生,在班级里面一直偷偷喜欢一名女同学,最近终于鼓起勇气向这名女生表白了,但是却遭到了这名女生的拒绝。小强非常失落,内心茫然,心情非常矛盾和痛苦,而且对自己产生了很负面的自我评价和认识,觉得自己有很多的缺点和不足,是自己不行才被拒绝的。这
某患者,根尖瘘管,患牙根充后行桩冠修复开始时机一般是
A.纵标目B.横标目C.标题D.成组设计的四格表E.配对设计的四格表2种药物治疗高血压的疗效见下表,请回答后面的提问2种药物治疗高血压的疗效表顶端的文字称为统计表的()
若要计算砂的相对密度,则需已知()。
建筑工程实行总承包,()将建筑工程肢解发包。
工程总承包单位和分包单位按照应急预案,各自建立应急救援组织,备好应急救援人员、器材、设备,并定期进行()。
财政管理体制是调节()资金管理权限和财力划分的一种根本制度。Ⅰ.中央与地方政府之间Ⅱ.地方各级政府之间Ⅲ.国家与企事业单位之间Ⅳ.中央各部委之间
东南公司2015年发生的与投资有关的经济业务如下:(1)2月23日,支付购买价款5000万元购入乙公司30%的股权,对乙公司具有重大影响。当日乙公司可辨认净资产的账面价值(与公允价值相同)为17000万元。(2)3月2日,从上海证券交易
2,10,30,68,(),222
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
最新回复
(
0
)