首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 设函数f(x)在(一∞,+∞)内连续,其导函数y′的图形如图1.2.5.4所示,则( ).
[2016年] 设函数f(x)在(一∞,+∞)内连续,其导函数y′的图形如图1.2.5.4所示,则( ).
admin
2021-01-19
17
问题
[2016年] 设函数f(x)在(一∞,+∞)内连续,其导函数y′的图形如图1.2.5.4所示,则( ).
选项
A、函数f(x)有2个极值点,曲线y=f(x)有2个拐点
B、函数f(x)有2个极值点,曲线y=f(x)有3个拐点
C、函数f(x)有3个极值点,曲线y=f(x)有1个拐点
D、函数f(x)有3个极值点,曲线y=f(x)有2个拐点
答案
B
解析
可利用定理1.2.5.1(函数取得极值的第一充分条件)判别函数f(x)有多少个极值点.可利用命题1.2.5.3(1)判别点(x
0
,f(x
0
))是曲线y=f(x)的拐点.
由导函数的图形1.2.5.4易看出,导数为0的点有x=a,b,c,d.它们是可导函数取极值的候选点.
由图易看出:当x<a时,f′(x)>0;当x>a时,f′(x)<0.由定理1.2.5.1(1)可判别x=a为f(x)的极大值点;
当x<c时,f′(x)<0;当x>c时,f′(x)>0.由定理1.2.5.1(2)可判别x=c为f(x)的极小值点.
但当x<b时,f′(x)<0;当x>b时,f′(x)<0.由定理1.2.5.1(3)知,x=b不是极值点.
同理,当x<d和x>d时,f′(x)>0,故x=d也不是极值点.
当x<b时,f′(x)单调下降,故f″(x)<0.当b<x<e时,f′(x)单调上升,故f″(x)>0.
由命题1.2.5.3(1)知,点(6,f(b))为拐点.
当c<x<e时,f′(x)单调上升,故f″(x)>0.又当e<x<d时,f′(x)单调下降,f″(x)<0.由命题1.2.5.3(1)知,点(e,f(e))为拐点.
当e<x<d时,f′(x)单调下降,f″(x)<0.当x>d时,f′(x)单调上升,故f″(x)>0.由命题1.2.5.3(1)知,点(d,f(d))为曲线的拐点.
综上知,曲线y=f(x)有2个极值点和3个拐点.仅(B)入选.
转载请注明原文地址:https://jikaoti.com/ti/e2ARFFFM
0
考研数学二
相关试题推荐
设f(χ)为偶函数,且f′(-1)=2,则=_______.
设z=esinxy,则dz=___________.
=_______.
=8,则以=_______.
若二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2一2x1x3+4x2x3为正定二次型,则λ的取值范围是________.
曲线的凹区间是________.
设随机变量X和Y相互独立,且都服从标准正态分布N(0,1),求Z=(X+Y)2的概率密度fZ(Z).
已知y=f’(x)=arctanx2,则|x=0=________.
(1987年)设y=In(1+aχ),则y′=________,y〞=_______.
(1990年)求微分方程χlnχdy+(y-lnχ)dχ=0满足条件y|χ=e=1的特解.
随机试题
Wenowobtainmorethantwo-thirdsofourproteinfromanimalsources,whileourgrandparents______onlyone-halffromanimalso
以甘油一酯途径合成三酰甘油主要存在于
沙门菌食物中毒的食品主要为蛋类和家禽肉,是因为
药物相互作用对药动学的影响A.与多潘立酮配伍B.甲苯磺丁脲配伍氢氯噻嗪C.磺胺类药与青霉素配伍D.与大环内酯类抗生素配伍E.阿司匹林与磺酰脲类降糖药合用影响分布()。
下列对框架建筑优缺点的表述中,正确的有()。
“进行招标策划,确定投标报价及其策略并确定承包合同价”是()阶段的造价管理内容。
资产负债表的下列项目中,需要根据几个总账账户的期末余额进行汇总填列的是()。
角色中断是指在一个人前后相继所承担的两种角色之间发生了矛盾的现象。根据上述定义,下列属于角色中断的是()。
2015年上半年,A市新设内资企业20518,注册资本(金)1651.8亿元,同比分别增长39.7%和133%。其中私营企业20187户,注册资本(金)1258.76亿元,同比分别增长30.4%和224%。从设立总量来看,批发零售业、制造业、
ReadingforpleasureistheeasiestwaytobecomeabetterreaderinEnglish.Itisalsothemostimportantway.Somestuden
最新回复
(
0
)