首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为,2,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α1=(Ar+2,1,…,Ar+2,n)T …… αn
设矩阵A=(aij)n×n的秩为,2,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α1=(Ar+2,1,…,Ar+2,n)T …… αn
admin
2018-08-03
19
问题
设矩阵A=(a
ij
)
n×n
的秩为,2,记A的元素a
ij
的代数余子式为A
ij
,并记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
1
=(A
r+2,1
,…,A
r+2,n
)
T
……
α
n—r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
由于A的行向量组线性无关,故B的行向量组线性无关,→r(B)=r,→方程组Bx=0的基础解系含n一r个向量,所以,要证明α
1
,α
2
,…,α
n—r
是方程组Bx=0的基础解系,只要证明α
1
,α
2
,…,α
n—r
是Bx=0的线性无关解向量即可.首先,由于[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,…,n),故α
1
,…,α
n—r
都是方程组Bx=0的解向量;其次,由于|A
*
|=|A|
n—1
≠0,知A
*
的列向量组线性无关,而α
1
,…,α
n—r
是A
*
的后n一r列,故α
1
,…,α
n—r
线性无关,因此α
1
,…,α
n—r
是Bx=0的线性无关解向量.
解析
转载请注明原文地址:https://jikaoti.com/ti/e22RFFFM
0
考研数学一
相关试题推荐
设=A,证明:数列{an}有界.
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ—η=(ea+eb)[f’(η)+f(η)].
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设f(x)为偶函数,且满足f’(x)+2f(x)一3∫0xf(t一x)dt=一3x+2,求f(x).
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+xy2]dy=0为全微分方程,求f(x)及该全微分方程的通解.
a,b取何值时,方程组有解?
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
考虑柱坐标系下的三重累次积分I=3dz.(Ⅰ)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
随机试题
(2018年济南章丘区)教书育人作为教师职业道德的一个基本原则,是由()决定的。
在幻灯片浏览视图中,可进行什么操作()
哲学的基本问题是【】
关于胃溃疡哪项是正确的
由3~5支终末细支气管组成的肺结构称为
可导致产后缺乳的证候有
2000年9月,王庆到怀柔县运通自行车行购买自行车,经过一番挑选,王庆决定购买单价500元“飞达”牌24型女式自行车一辆、单价400元“旗达”牌26型男车一辆,总计共900元。当时,王庆只随身携带有600元现金,遂将其所有现款交付给车行,并约定第二天交付
背景某项目经理部负责南方某市话线路工程的施工,工程计划7月1日开工、9月30日完工,施工内容包括制作架空杆路、敷设架空电缆和管道电缆、安装配线设备、总配线架成端等工作量,工程采用包工不包料的方式承包。项目经理部的人员构成情况见下表:
当消费者处于均衡状态时,()。
阅读以下关于某局域网IP地址规划的技术说明,根据要求回答问题1~问题6。【说明】计算机PCa、PCb、PCc、PCd和PCe通过一台路由器处在同一个物理网络中,每台主机的IP地址、所在子网的子网地址、所连接的交换机管理IP地址如图1-14所示。
最新回复
(
0
)