设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3. (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:A不可相似对角化.

admin2019-07-10  43

问题 设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3
(Ⅰ)证明:向量组α1,α2,α3线性无关;
(Ⅱ)证明:A不可相似对角化.

选项

答案(Ⅰ)由Aα1=α1得(A-E)α1=0,由Aα2=α1+α2得(A-E)α2=α1,由Aα3=α2+α3得(A-E)α3=α2.令k1α1+k2α2+k3α3=0, 1) 两边左乘(A-E)得k2α1+k3α2=0, 2) 两边再左乘(A-E)得k3α1=0,由α1≠0得k3=0,代入2)得k2α1=0,则k2=0,再代入1)得k1α1=0,从而k1=0,于是α1,α2,α3线性无关. (Ⅱ)令P=(α1,α2,α3),由(Aα1,Aα2,Aα3)=(α1,α1+α2,α2+α3)得AP=[*]从而p﹣1AP=[*]=B.由|λE-A|=|λE-B|=(λ-1)3=0得A的特征值为λ1=λ2=λ3=1,E-B=[*],因为r(E-B)=2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化.

解析
转载请注明原文地址:https://jikaoti.com/ti/dKnRFFFM
0

最新回复(0)