首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(z)在[0,1]上连续.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(z)在[0,1]上连续.
admin
2019-11-25
39
问题
设f(x)在[0,1]上有定义,且e
x
f(x)与e
-f(x)
在[0,1]上单调增加.证明:f(z)在[0,1]上连续.
选项
答案
对任意的x
0
∈[0,1],因为e
x
f(x)与e
-f(x)
在[0,1]上单调增加, 所以当x<x
0
时,有[*]故f(x
0
)≤f(x)≤[*]f(x
0
), 令x→[*],由夹逼定理得f(x
0
-0)=f(x
0
), 当x>x
0
时,[*]故[*]f(x
0
)≤f(x)≤f(x
0
), 令x→[*],由夹逼定理得f(x
0
+0)=f(x
0
),故f(x
0
-0)=f(x
0
+0)=f(x
0
), 即f(x)在x=x
0
处连续,由x
0
的任意性得f(x)在[0,1]上连续.
解析
转载请注明原文地址:https://jikaoti.com/ti/d5iRFFFM
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在(a,b)内存在ξ,使得
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2).证明:当n为奇数时,(x0,f(x0))为拐点.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
求函数y=excosx的极值.
求二重积分.其中D是由曲线,直线y=2,y=x所围成的平面区域.
微分方程xdy—ydx=ydy的通解是______.
设α1,α2,…,αs是n维向量,则下列命题中正确的是
设A是m×n阶矩阵,则下列命题正确的是().
求yt=tet+2t2-1的一阶差分.
随机试题
()是金属材料的机械性能指标。
现代行政学认为,行政权力的具体来源有()
以下选项中,既可能导致独语又可能导致错语的是
女,45岁,轻度肥胖,无明显口渴、多饮和多尿现象,空腹血糖6.8mmol/L。为确定是否有糖尿病。应检查
下列选项关于隧道内风速检测的说法正确的是()。
根据我国《民法通则》的规定,普通诉讼时效的期间为两年。()
商业银行对客户进行评级时,财务报表分析的重点不包括()。
普通支票,既可以用来支取现金,也可以用来转账。()
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明:若f(x)单调不增,则F(x)单调不减.
分别执行ADD AX,1和INC AX指令后,AX寄存器中将会得到同样的结果,但是在执行速度和占用内存空间方面存在差别,说法正确的是( )。
最新回复
(
0
)