(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证: (I)对于(一1,1)内的任意x≠0,存在唯一的θ(x)∈(0,1),使 f(x)=f(0)+xf[θ(x)x]成立;

admin2018-03-11  40

问题 (2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:
    (I)对于(一1,1)内的任意x≠0,存在唯一的θ(x)∈(0,1),使
                  f(x)=f(0)+xf[θ(x)x]成立;
   

选项

答案(I)因为y=f(x)在(一1,1)内具有二阶连续导数,所以一阶导数存在,由拉格朗日中值定理得,任给非零x∈(一1,1),存在θ(x)E(0,1),θ(x)·x∈(一1,1),使 f(x)=f(0)+xf′[θ(x)·x](0<θ(x)<1) 成立。 因为f"(x)在(一1,1)内连续且f"(x)≠0,所以f"(x)在(一1,1)内不变号,不妨设f"(x)>0,则f′(x)在(一1,1)内严格单调且增加,故θ(x)唯一。 (Ⅱ)方法一:由(I)知f(x)=f(0)+xf′[θ(x)·x](0<θ(x)<1),于是有 [*] 上式两边取极限,再根据导数定义,得 [*] 方法二:由泰勒公式得f(x)=f(0)+f′(0)x+[*]f"(ξ)x2,ο∈(0,x), 再与(I)中的 f(x)=f(0)+xf′[θ(x)x](0<θ(x)<1), 比较,所以 xf′[θ(x)x]=f(x)一f(0)=f′(0)x+[*]f"(ξ)x2, 约去x,有 f′[θ(x)x]=f′(0)+[*]f"(ξ)x, 凑成 [*] 由于 [*] 所以[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/d4VRFFFM
0

最新回复(0)