首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证: (I)对于(一1,1)内的任意x≠0,存在唯一的θ(x)∈(0,1),使 f(x)=f(0)+xf[θ(x)x]成立;
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证: (I)对于(一1,1)内的任意x≠0,存在唯一的θ(x)∈(0,1),使 f(x)=f(0)+xf[θ(x)x]成立;
admin
2018-03-11
40
问题
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:
(I)对于(一1,1)内的任意x≠0,存在唯一的θ(x)∈(0,1),使
f(x)=f(0)+xf[θ(x)x]成立;
选项
答案
(I)因为y=f(x)在(一1,1)内具有二阶连续导数,所以一阶导数存在,由拉格朗日中值定理得,任给非零x∈(一1,1),存在θ(x)E(0,1),θ(x)·x∈(一1,1),使 f(x)=f(0)+xf′[θ(x)·x](0<θ(x)<1) 成立。 因为f"(x)在(一1,1)内连续且f"(x)≠0,所以f"(x)在(一1,1)内不变号,不妨设f"(x)>0,则f′(x)在(一1,1)内严格单调且增加,故θ(x)唯一。 (Ⅱ)方法一:由(I)知f(x)=f(0)+xf′[θ(x)·x](0<θ(x)<1),于是有 [*] 上式两边取极限,再根据导数定义,得 [*] 方法二:由泰勒公式得f(x)=f(0)+f′(0)x+[*]f"(ξ)x
2
,ο∈(0,x), 再与(I)中的 f(x)=f(0)+xf′[θ(x)x](0<θ(x)<1), 比较,所以 xf′[θ(x)x]=f(x)一f(0)=f′(0)x+[*]f"(ξ)x
2
, 约去x,有 f′[θ(x)x]=f′(0)+[*]f"(ξ)x, 凑成 [*] 由于 [*] 所以[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/d4VRFFFM
0
考研数学一
相关试题推荐
证明:若三事件A,B,C相互独立,则A∪B及A—B都与C独立.
设二次方程x2一Xx+Y=0的两个根相互独立,且都在(0,2)上服从均匀分布,分别求X与Y的概率密度.
利用变换y=f(ex)求微分方程y’’一(2ex+1)y’+e2xy=e3x的通解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分。
(2002年)
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:
[2018年]设F(x,y,z)=xyi—yzj+xzk,则rotF(1,1,0)=______.
随机试题
配电箱的固定方式()。
简述战略环境分析的主要内容。
Felty综合征
五加皮的主治证是_________,_________,_________。
中枢神经系统白血病多见于
长江公司为增值税一般纳税人,2015年1月1日长江公司从乙公司购入一项专门用于生产新产品A产品的无形资产,由于长江公司资金周转比较困难,经与乙公司协商采用分期付款方式支付款项,该无形资产合同规定总价款为2000万元,从2015年起每年年末支付500万元,分
旅游者在游览活动中走失,导游员应当首先立即报告旅行社。()
某教师设计了部分试题进行单元小测试,其中一道试题如下。不少同学本题选择了B。试题:用同样大小的水平拉力拉动水平面上的物体移动相同的距离,第一次是在光滑水平面上,第二次是在粗糙的水平面上,则两次拉力所做功()。A.第一次多
已知某零件的横截面是一个圆,对横截面的直径进行测量,其值在区间(1,2)上服从均匀分布,则横截面面积的数学期望为________,方差为________.
A、Withhisgrandparents.B、Instudenthousing.C、Withhiswife’sparents.D、Inhisownapartment.C这是一道细节题。在谈到申请住房者必须符合收入条件时,M提
最新回复
(
0
)