首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k﹥0),则f(x)在(a,+∞)内的零点个数为( )。
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k﹥0),则f(x)在(a,+∞)内的零点个数为( )。
admin
2019-09-23
42
问题
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k﹥0),则f(x)在(a,+∞)内的零点个数为( )。
选项
A、0
B、1
C、2
D、3
答案
B
解析
因为f’(a)=0,且f"(x)≥k(k>0),所以f(x)=f(a)+f’(a)(x-a)+
(x-a)
2
≥f(a)+
(x-a)
2
,其中ε介于a与x之间,而
,故
,再由f(a)<0得f(x)在(a,+∞)内至少有一个零点,又因为f’(a)=0,且f"(x)≥k(k≥0),所以f’(x)>0(x>a),即f(x)在[a,+∞)单调增加,所以零点是唯一的,选B.
转载请注明原文地址:https://jikaoti.com/ti/cgtRFFFM
0
考研数学二
相关试题推荐
设A是n阶可逆矩阵,将A的第i行和第j行对换得到的矩阵记为B,证明B可逆,并推导A-1和B-1的关系.
关于微分方程的下列结论:①该方程是齐次微分方程②该方程是线性微分方程③该方程是常系数微分方程④该方程为二阶微分方程其中正确的是[].
设f(x)和φ(x)在(一∞,+∞)上有定义f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
设=β>0,则α,β的值为_____________.
若x→0时与xsinx是等价无穷小量,试求常数a.
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
下列说法中正确的是().
设f(x)=sint2dt,g(x)=x3+x4,当x→0时,f(x)是g(x)的()
设f(χ)=∫01-cosχsint2dt,g(χ)=,则当χ→0时,f(χ)是g(χ)的().
设且f’(0)存在,求a,b.
随机试题
简述正式沟通的优缺点。
下列关于PET能量分辨率与能窗的描述,错误的一项是
发生重大动物疫情的疫区应采取的措施不包括()。
下列与类风湿关节炎活动无关的是
关于基差,下列说法不正确的有( )。
下列关于土地增值税的表述,不正确的是()。
在单声部作品中,进行方式为________和________两种。
艺术的最高追求是()。
现在实行医生多点执业和医生自主创业政策,假如现在由你负责调查政策实施的效果,你认为重点有哪些方面?
U.S.EarlyChildhoodEducationFiftyyearsago,【T1】______attendedearlyeducationprograms.Today,【T2】______thechildrenof
最新回复
(
0
)