首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。 (Ⅰ)求xTAx的表达式; (Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。 (Ⅰ)求xTAx的表达式; (Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
admin
2018-11-16
11
问题
已知三元二次型x
T
Ax的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α。
(Ⅰ)求x
T
Ax的表达式;
(Ⅱ)求作正交变换x=Qy,把x
T
Ax化为标准二次型。
选项
答案
(Ⅰ)设A=[*],则条件Aα=2α即 [*] 得2a-b=2,a-c=4,b+2c=-2,解出a=b=2,c=-2。此二次型为4x
1
x
2
+4x
1
x
3
-4x
2
x
3
。 (Ⅱ)先求A的特征值 [*] 于是A的特征值就是2,2,-4,再求单位正交特征向量组:属于2的特征向量是(A-2E)x=0的非零解。[*]得(A-2E)x=0的同解方程组:x
1
- x
2
-x
3
=0。 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,-1,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
,再把它们单位化:记[*],属于-4的特征向量是(A+4E)x=0的非零解。求出β
3
=(1,-1,-1)
T
是一个解,单位化:记[*],则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,-4。作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,-4。作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
-4y
3
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/cAIRFFFM
0
考研数学三
相关试题推荐
y=上的平均值为________.
设随机变量X,Y同分布,X的密度为f(x)=设A={X>a)与B={Y>a)相互独立,且P(A+B)=.求:a;
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
试求心形线x=acos3θ,y=asin3θ与两坐标轴所围成的平面图形绕y轴旋转一周所得旋转体的体积.
求的通解,及其在初始条件y|x=1=0下的特解.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,。其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
已知{an}是单调增加且有界的正数列,证明:级数收敛.
设X,Y相互独立且同服从[0,θ](θ>0)上的均匀分布,求E[min(X,Y)],E[max(X,Y)]。
随机试题
WhatwasthepeculiarfeatureofthefeudalsystemofEngland?
心肌中富含的LDH同工酶是
女性患者,45岁,与人争吵时突然出现意识丧失,继而跌倒,有面色苍白、出汗及脉搏不规则,无肢体抽搐,约10s后恢复清醒。考虑为
紫外线灯用于空气消毒的有效距离
正常分娩机制俯屈是胎头遇到盆底阻力,以枕额径转为
混凝土拌和时的投料方式有()。
单证缮制必须做到正确、完整、及时、简明和整洁,其中()是单证工作的前提。
注册会计师审计或有负债的下列各项审计程序中,最无效的是( )。
简述引起人际冲突的因素。【湖南师范大学2014】
在学生管理的关系数据库中,存取一个学生信息的数据单位是()。【10年3月】
最新回复
(
0
)