首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定矩阵 其行向量都是齐次线性方程组(Ⅰ): 的解向量.问:B的4个行向量是否构成方程组(Ⅰ)的基础解系?若不能,不用解方程组的方法.试求方程组(Ⅰ)的一个基础解系.
给定矩阵 其行向量都是齐次线性方程组(Ⅰ): 的解向量.问:B的4个行向量是否构成方程组(Ⅰ)的基础解系?若不能,不用解方程组的方法.试求方程组(Ⅰ)的一个基础解系.
admin
2020-04-21
60
问题
给定矩阵
其行向量都是齐次线性方程组(Ⅰ):
的解向量.问:B的4个行向量是否构成方程组(Ⅰ)的基础解系?若不能,不用解方程组的方法.试求方程组(Ⅰ)的一个基础解系.
选项
答案
先用观察法找出方程组(Ⅰ)所包含的独立方程的个数.这样易求出其系数矩阵A的秩(当然,也可用初等行变换求之).事实上,有 2×①+②=④, 3×①一②=③. 因而方程组(Ⅰ)中的方程①与②是独立方程组,其系数矩阵A的秩为2.又n=5,故方程组 (Ⅰ)的一个基础解系只含5—2=3个解向量.因而只需找出B中3个线性无关的行向量即可. 解 令B中的第1,2,4个行向量分别为 β
1
=[1,一2,1,0,0]
T
, β
2
=[1,一2,0,1,0]
T
, β
4
=[5,一6,0,0,1]
T
. 因[*],显然线性无关,在其相同位置上增加相同个数的分量(2个分量),即得到β
1
,β
2
,β
4
.它们仍然线性无关,于是它们可作为方程组(Ⅰ)的一个基础解系. 而B中第3个行向量 β
3
=[1,一2,3,一2,0]
T
=3β
1
一2β
2
+Oβ
4
即为β
1
,β
2
,β
4
的线性组合,故B中4个行向量不能组成方程组(Ⅰ)的基础解系. 事实上,方程组(Ⅰ)的一个基础解系只含3个解向量.当然这3个解向量不唯一.事实上,β
1
,β
3
,β
4
也是方程组(Ⅰ)的一个基础解系.
解析
转载请注明原文地址:https://jikaoti.com/ti/c5ARFFFM
0
考研数学二
相关试题推荐
设A是任一n(n≥3)阶方阵,A*是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
[2006年]设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解.(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
问λ为何值时,线性方程组有解,并求出解的一般形式.
[2003年]已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
设连续函数f(x)满足:[f(x)+xf(xt)]dt与x无关,求f(x).
计算dχdy,其中D为曲线y=lnχ与两直线y=0,y=(e+1)-χ所围成的平面区域.
求积分:
求下列函数的定义域:
设分别讨论x→0及x→1时,f(x)的极限是否存在.
e先用洛必达法则去掉分子、分母的积分号,再按幂指函数求其极限的方法求之.解或
随机试题
浓硫酸储罐的材质应选择()。
甲、乙、丙三人共同出资成立一家普通合伙企业,合伙协议约定:甲对外代表企业,乙、丙不执行企业事务。企业成立后,甲为了增加企业的流动资金,自行决定以企业名义将企业闲置厂房出售给张某。此后不久,甲意外去世,甲的儿子要求继承父亲在该企业的合伙人资格。对此,丙同意,
机体体液、渗透压及酸碱平衡的调节机制是什么?
婴儿服用丸剂、片剂,应该
理气剂适用于除何项以外的病证
关于刑事判决与裁定的区别,下列说法中正确的是()。
2016年9月,A、B、C、D协商设立普通合伙企业。其中,A、B、D系辞职职工,C系一法人型集体企业,其拟定的合伙协议约定:A以劳务出资、B、D以实物出资,对企业债务承担无限责任,并由A、D负责公司的经营管理事务;C以货币出资,对企业债务以其出资额承担有限
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
2011年1~6月份全国非住宅投资额占投资额的比重约为:
下列不是组成屈光系统的眼部结构是
最新回复
(
0
)