首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(x)在[a,b]上非负连续且不恒为零,证明必有 ∫abf(x)dx>0; (2)是否存在[0,2]上的可导函数f(x),满足 f(0)=f(2)=1,|f’(x)|≤1,|∫02f(x)dx|≤1, 并说明理由.
(1)设f(x)在[a,b]上非负连续且不恒为零,证明必有 ∫abf(x)dx>0; (2)是否存在[0,2]上的可导函数f(x),满足 f(0)=f(2)=1,|f’(x)|≤1,|∫02f(x)dx|≤1, 并说明理由.
admin
2018-09-25
22
问题
(1)设f(x)在[a,b]上非负连续且不恒为零,证明必有
∫
a
b
f(x)dx>0;
(2)是否存在[0,2]上的可导函数f(x),满足
f(0)=f(2)=1,|f’(x)|≤1,|∫
0
2
f(x)dx|≤1,
并说明理由.
选项
答案
由题意f(x)≥0,x∈[a,b],存在x
0
∈[a,b],使f(x
0
)≠0,从而f(x
0
)>0,又 由连续性可得,[*]=f(x
0
)>0=>存在δ>0与η>0,当0<|x-x
0
|<δ时,恒有 f(x)>η>0. 于是 ∫
a
b
f(x)dx≥∫
x
0
-δ
x
0
+δ
f(x)dx≥∫
x
0
-δ
x
0
+δ
ηdx=η.2δ>0. (2)设[0,2]上存在连续可微的函数f(x)满足题设条件,则在[0,1]上,对任意x∈(0,1],存在ξ
1
∈(0,x),由拉格朗日中值定理得f(x)-f(x)=f’(ξ
1
)(x-0),即f(x)=1+f’(ξ
1
)x. 利用|f’(x)|≤1得1-x≤f(x)(x∈(0,1]). 由题设f(0)=1知,这一不等式成立范围可扩大为x∈[0,1]. 同样,在[1,2]上,对任意x∈[1,2),存在ξ
2
∈(x,2),由拉格朗日中值定理得 f(x)-f(2)=f’(ξ
2
)(x-2), 即f(x)=1+f’(ξ
2
)(x-2),利用|f’(x)|≤1得 1+(x-2)≤f(x), 即x-1≤f(x)(x∈[1,2)). 由题设f(2)=1知这一不等式成立范围可扩大为z∈[1,2]. ∫
0
2
f(x)dx=∫
0
1
f(x)dx+∫
1
2
f(x)dx >∫
0
1
(1-x)dx+∫
1
2
(x-1)dx [*] 这与f(x)所满足的|∫
0
2
f(x)dx|≤1矛盾,故不存在这样的f(x).
解析
转载请注明原文地址:https://jikaoti.com/ti/bp2RFFFM
0
考研数学一
相关试题推荐
求级数的和.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
求下列曲面的面积:(Ⅰ)半球面z=及旋转抛物面2az=x2+y2所围立体的表面S;(Ⅱ)锥面z=被柱面z2=2x所割下部分的曲面S.
求引力:(Ⅰ)在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).(Ⅱ)设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P
设二维随机变量(X,Y)服从区域一1≤x≤1,0≤y≤2上的均匀分布,求二次曲面+2x1x2+2Xx1x3=1为椭球面的概率.
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
求幂级数的收敛区间,并讨论该区间端点处的收敛性。
设求∫f(x)dx.
随机试题
John______nowforthelightinhisroomisstillon.
淋病治愈的标准是结束治疗后2周内的下列何项
土地使用权出租设定登记的申请人应提交的权属证明文件包括()。
《医疗废物焚烧炉技术要求》(试行)(GB19218—2003)中规定,有关医疗废物焚烧炉的技术性能指标正确的是()。
建设项目后评价成果,应成为( )的参考和依据。
二次衬砌的施作时,应满足产生的各项位移已达预计总位移量的()要求。
(2002年考试真题)股票具有的特征包括()。
若干个人分若干个梨,若每人分8个,则剩下16个,若每人分9个,则刚好分完,问有多少个人?多少个梨?()
下列句子中没有语病的一句是:
ModernExaminationsIntheschoolsofancienttimes,themostimportantexaminationswerespoken.Usuallythestudentsweres
最新回复
(
0
)