首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 (1) 有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组 (2) 的通解是___________。
已知齐次线性方程组 (1) 有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组 (2) 的通解是___________。
admin
2019-01-19
41
问题
已知齐次线性方程组
(1)
有通解k
1
(2,一1,0,1)
T
+k
2
(3,2,1,0)
T
,则方程组
(2)
的通解是___________。
选项
答案
k
2
(13,一3,1,5)
T
,k
2
为任意常数
解析
方程组(2)的通解一定会在方程组(1)的通解之中,且是方程组(1)的通解中满足(2)中第三个方程的解,将(1)的通解
代入(2)的第三个方程,得
(2k
1
+3k
2
)一2(一k
1
+2k
2
)+0k
2
+k
1
=0,
即5k
1
=k
2
,将其代入(1)的通解中,得方程组(2)的通解为
5k
2
(2,一1,0,1)
T
+k
2
(3,2,1,0)
T
=k
2
(13,一3,1,5)
T
,k
2
为任意常数。
转载请注明原文地址:https://jikaoti.com/ti/bgBRFFFM
0
考研数学三
相关试题推荐
设函数y=y(x)由参数方程确定,则在x的变化区间(0,1)内
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
微分方程F(x,y4,y’,(y")2)=0的通解中应含有()个任意常数.
设A、B都是n阶实对称矩阵,证明:存在正交矩阵P,使得P—1AP=B的充分必要条件是A与B有相同的特征多项式.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
随机试题
小伟是一名初中二年级的学生,因为他父母忙于工作,小伟是在爷爷奶奶家长大的,爷爷奶奶对他都很娇纵,使得他非常以自我为中心,在学校里稍有一些不满意就会与同学发生争吵,对于老师的批评也不接受,有一次差点出手打老师。针对小伟的问题,学校社会工作者应采用的社会工作方
甲与乙在同一办公室工作。一日,甲偷看了乙的日记,从中得知乙与本公司总经理有不正当男女关系,之后便在同事中散布,使乙非常痛苦。甲侵害了乙的()
根据真实票据理论,带有自动清偿性质的贷款是()。
如果企业的总资产息税前利润率高于借入资金利息率,则提高负债程度会提高企业的自有资金利润率。( )
大学生面对理想和现实的差距感到不理解和彷徨,你怎么看?
就儿童发展整体而言,生理成熟先于心理成熟。
Informationsystemsplannersinaccordancewiththespecificinformationsystemplanningmethodsdevelopedinformationarchitect
Whatisthepassagetalkingabout?______.
Imagineaworldinwhichtherewassuddenlynoemotion-aworldinwhichhumanbeingscouldfeelnoloveorhappiness,noterro
Onceitwaspossibletodefinemaleandfemaleroleseasilybythedivisionoflabour.Menworkedoutsidethehomeandearnedth
最新回复
(
0
)