首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.
[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.
admin
2019-04-28
45
问题
[2006年] 设α
1
,α
2
,…,α
s
都是n维列向量,A是m×n矩阵,则( )成立.
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
答案
A
解析
解一 由定义知,若α
1
,α
2
,…,α
s
线性相关,则存在不全为零的数c
1
,c
2
,…,c
s
,使得c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0.用A左乘等式两边,得
c
1
Aα
1
+c
2
Aα
2
+…+c
s
Aα
s
=0,
于是Aα
1
,Aα
2
,…,Aα
s
线性相关.仅(A)入选.
解二 若α
1
,α
2
,…,α
s
线性相关,则秩([α
1
,α
2
,…,α
s
])
秩([Aα
1
,Aα
2
,…,Aα
s
])=秩(A[α
1
,α
2
,…,α
s
])≤秩([α
1
,α
2
,…,α
s
])
故Aα
1
,Aα
2
,…,Aα
s
线性相关.仅(A)入选.
转载请注明原文地址:https://jikaoti.com/ti/benRFFFM
0
考研数学三
相关试题推荐
设矩阵A=有一个特征值为3.(1)求y;(2)求可逆矩阵P,使得(AP)T(AP)为对角矩阵.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设向量组线性相关,但任意两个向量线性无关,求参数t.
级数的收敛域为______,和函数为______.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
设A=有三个线性无关的特征向量,求a及An.
随机试题
虚劳病证辨证时的纲是
禁用于肾功能不全患者的抗菌药物是
下列对于宪法的评价作用说法错误的是:
商业银行开展个人理财业务存在()情形的,其直接责任人将可能被追究刑事责任。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
历史上落后的游牧民族常能征服较为先进的农耕地区的原因。
张云、李华、王涛都收到了明年2月赴北京开会的通知。他们可以选择乘坐飞机、高铁与大巴等交通工具进京。他们对这次进京方式有如下考虑:(1)张云不喜欢坐飞机,如果有李华同行,他就选择乘坐大巴;(2)李华不计较方式,如果高铁票价比飞机便宜,他就选择乘坐高铁;
Therehasbeenstrongcompetition;______,thenewcompanyhasmadegreatprofits.
Ihaveworkedwithsomanypeopleovertheyearsthathavemademewonderhowonearththeycanworkattheirdeskwheneverythi
A、Indifferent.B、Reluctant.C、Cautious.D、Enthusiastic.D
最新回复
(
0
)