首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
admin
2022-10-09
41
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
选项
答案
先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=f(2)=5/3,P(1)=f(1).则P(x)=x
3
/3+[1/3-f(1)]x
2
+[2f(1)-5/3]+1,令g(x)=f(x)=P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c
1
∈(0,1),c
2
∈(1,2),使得g’(c
1
)=g’(1)=g’(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
)使得g"(d
1
)=g"(d
2
)=0,再由罗尔定理,存在ξ∈(d
1
,d
2
)∈(0,2),使得g’"(ξ)=0,而g’"(x)=f’"(x)-2,所以f’"(ξ)=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/bFfRFFFM
0
考研数学三
相关试题推荐
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.然后证明矩阵A与A-1合同.
已知A是3阶的实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.用正交变换x=Py化二次型xTAx为标准形,并写出所用的正交变换;
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
确定常数a,b,c的值,使
设f(x)在(-∞,+∞)内是连续的偶函数,证明dt也是偶函数.
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
设F(X)在[0,2]上连续,在(0,2)内三阶可导,且=2,f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f"’(ξ)=9.
设f(x)为二阶连续可导,且,证明级数绝对收敛.
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
设f(x)在区间[0,a]上连续,且当x∈(0,a)时,0<f(x)<x,令x1∈(0,a),xn+1=f(xn)(n=1,2,..).
随机试题
某宗土地总面积为5000m2,土地总价格1000万元,规划总建筑面积12500m2,建筑基底总面积为2500m2,则其楼面地价为()元/m2。
地下水中含量较多,分布最广的几种离子是:
自古以来,无数哲人在迷惘中探求着公平和正义。下列关于公平的含义,理解正确的是()。①公平是在比较中产生的,公平不受任何社会条件制约②公平是维系良好合作关系的前提,是社会的稳定器③有了公平,每个社会成员的生存发展才有保障④公平是相对的,但只要
打工诗歌
经济全球化本质上是()
关于数据库概念设计及物理结构设计,下列说法错误的是()。
Readthearticlebelowandchoosethebestsentencefromthelistonthenextpagetofilleachofthegaps.Foreachgap(1-
WhenSpanishfootballclubBarcelonapaidUS$35millionforRonaldinholastsummer,theyweren’tbuyingaprettyface."Iam(51)
Thediseasespreadveryquickly,butthankstothehelpofthesoldiers,allthepeople______weresenttobighospitals.
A、Shelostalotofweightintwoyears.B、Shestoppedexercisingtwoyearsago.C、Shehadauniquewayofstayinghealthy.D、Sh
最新回复
(
0
)