首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
admin
2022-10-09
37
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
选项
答案
先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=f(2)=5/3,P(1)=f(1).则P(x)=x
3
/3+[1/3-f(1)]x
2
+[2f(1)-5/3]+1,令g(x)=f(x)=P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c
1
∈(0,1),c
2
∈(1,2),使得g’(c
1
)=g’(1)=g’(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
)使得g"(d
1
)=g"(d
2
)=0,再由罗尔定理,存在ξ∈(d
1
,d
2
)∈(0,2),使得g’"(ξ)=0,而g’"(x)=f’"(x)-2,所以f’"(ξ)=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/bFfRFFFM
0
考研数学三
相关试题推荐
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.求A的全部特征值;
已知A是3阶的实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.用正交变换x=Py化二次型xTAx为标准形,并写出所用的正交变换;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为求矩阵A;
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足tr(A)=-6.AB=C,其中指出方程f(x1,x2,x3)=1表示何种曲面;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2=(2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为__________.
设f(x)二阶可导,且f(1)=1,证明:存在ξ∈(0,1),使得f’’(ξ)-2f’(ξ)=﹣2.
设向量组(Ⅰ):α1,α2,…,αm,组(Ⅱ):β1,β2,…,βn,其秩分别为γ1,γ2,向量组(Ⅲ):α1,α2,…,αm,β1,β2,…,βn的秩为γ3,证明max{γ1,γ2}≤γ3≤γ1+γ2.
设F(x)是f(x)的一个原函数,且当x>0时,满足f(x)F(x)=,F(x)<0,F(0)=一1.求f(x)(x>0).
随机试题
综合应用短梯度曲线、深浅三侧向曲线、声波时差曲线、自然电位曲线、视电阻率曲线,在测井曲线的不匹配上找出规律,可以()地解释水淹层。
中毒型菌痢选用山莨菪碱抢救休克的适应证是
某工程的施工合同工期为16周,项目监理机构批准的施工进度计划如图3.1所示。各工作均按匀速施工。施工单位的报价单(部分)见表3.1。工程施工到第4周时进行进度检查,发生如下事件:事件1:A工作已经完成,但由于设计图纸局部修改,实际完成
具有治疗意义的沉默有()。
要求求助者持续一段时间暴露在现实的恐惧刺激中而不采取任何缓解恐惧的行为,让恐惧自行降低的方法是()。
“头脑风暴法”是公共政策定性分析的方法之一,下列关于该方法的说法错误的是()。
Sincepleasureisthefirstgoodandnaturaltous,forthisveryreasonwedonotchooseeverypleasure,butsometimeswepass
XiaoLispeaksEnglishinawayasifshe(be)______anAmerican.
ComparedwiththeBeatles,BobDylan______.BobDylanbecamefamoustomoreandmorepeoplebecause______.
A、Theastronautisacousinofherfriend.B、Theastronautisanuncleofherfriend.C、Theastronautisacousinofherteacher
最新回复
(
0
)