设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.

admin2022-10-09  41

问题 设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.

选项

答案先作一个函数P(x)=ax3+bx2+cx+d,使得P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=f(2)=5/3,P(1)=f(1).则P(x)=x3/3+[1/3-f(1)]x2+[2f(1)-5/3]+1,令g(x)=f(x)=P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c1∈(0,1),c2∈(1,2),使得g’(c1)=g’(1)=g’(c2)=0,又存在d1∈(c1,1),d2∈(1,c2)使得g"(d1)=g"(d2)=0,再由罗尔定理,存在ξ∈(d1,d2)∈(0,2),使得g’"(ξ)=0,而g’"(x)=f’"(x)-2,所以f’"(ξ)=2.

解析
转载请注明原文地址:https://jikaoti.com/ti/bFfRFFFM
0

最新回复(0)