首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn试推导σ2的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn试推导σ2的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
admin
2018-08-30
20
问题
总体X~N(2,σ
2
),从X中抽得简单样本X
1
,…,X
n
试推导σ
2
的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ
2
的置信度为0.95的置信区间.(χ
0.975
2
(6)=14.449,χ
0.025
2
(6)=1.237.下侧分位数.)
选项
答案
χ
2
=[*](X
i
-2)
2
~χ
2
(n), ∴1-α=[*] 故σ
2
的置信区间为: [*] 对1-α=0.95,n=6,可算得[*](χ
i
-2)
2
=0.14, 故σ
2
的置信区间为[*]=[0.009689,0.1132].
解析
转载请注明原文地址:https://jikaoti.com/ti/b12RFFFM
0
考研数学一
相关试题推荐
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
确定常数a和b,使得函数f(x)=处处可导.
在一个盒子中放有10个乒乓球,其中8个是新球,2个是用过的球.在第一次比赛时,从该盒子中任取2个乒乓球,比赛后仍放回盒子中.在第二次比赛时从这个盒子中任取3个乒乓球,则第二次取出的都是新球的概率为___________.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X的概率密度为f(x)=.一∞<x<+∞,λ>0.试求A的矩估计量和最大似然估计量.
有甲、乙、丙三个盒子,第一个盒子里有4个红球1个白球,第二个盒子里有3个红球2个白球,第三个盒子里有2个红球3个白球,先任取一个盒子,再从中先后取出3个球,以X表示红球数.(Ⅰ)求X的分布律;(Ⅱ)求所取到的红球不少于2个的概率.
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A-E恒可逆。上述命题中,正确的个数为()
编号为1,2,3的三个球随意放入编号为1,2,3的三个盒子中,每盒仅放一个球,令求(X1,X2)的联合分布。
已知某产品的边际收益函数,其中q为销售量,R=R(q)为总收益,求该产品的总收益函数R(q).
随机试题
A.小脑皮质篮状细胞B.小脑皮质颗粒细胞C.两者皆是D.两者皆非是中间神经元()
()装配时,首先应在轴上装平键。
最能说明肝硬化患者已存在门脉高压的表现是
患者,男性,49岁,饮酒十余年且肝炎史30年。近3月余明显消瘦,食欲减退。现右上腹疼痛、低热、腹胀、乏力。查体:双下肢轻度水肿,腹部移动性浊音(+),血白蛋白与球蛋白比值为0.7,24小时尿量为320ml。该患者现处于
()结论,不仅是债权人决策贷款与否的依据,也是投资人确定融资方式的重要依据。
《工业金属管道工程施工及验收通用规范》规定,管道安装应具备的条件包括()。
企业出售、转让、报废投资性房地产时,应当将处置收入计入()。
中学生小张认为遵守交通法规是人人应尽的责任与义务。根据科尔伯格的道德发展阶段理论,小张的道德判断处于()阶段。
甲、乙、丙三人的月收人分别是5000元、4000元、1000元,如果保持三人月收入比值不变且使平均月收入达到5000元,则丙的月收入增加了()。
下列程序的输出结果为#include<iostream.h>voidmain(){char*a[]={"hello","the","world"};char**pa=a;pa++;
最新回复
(
0
)