首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (I) y”一3y’=2—5x; (Ⅱ)y”+y=cosxcos2x.
求下列微分方程的通解: (I) y”一3y’=2—5x; (Ⅱ)y”+y=cosxcos2x.
admin
2017-07-28
53
问题
求下列微分方程的通解:
(I) y”一3y’=2—5x; (Ⅱ)y”+y=cosxcos2x.
选项
答案
(I)先求相应齐次方程的通解,由于其特征方程为λ
2
一3λ=λ(λ一3)=0,所以通解为 [*]=C
1
+C
2
e
3x
. 再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具形式y*(x)=x(Ax+B),代入原方程,得 [y*(x)]”一3[y*(x)]’=2A一3(2Ax+B)=一6Ax+2A一3B=2—6x. 比较方程两端的系数,得[*]解得A=1,B=0,即特解为y*(x)=x
2
.从而,原方程的通解为y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosxcos2x=[*].根据线性微分方程的叠加原理,可以分别求出y”+y=[*]的特解y
1
*(x)与y
2
*(x),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;同时[*]的特解应具有形式:y
1
*(x)=Axcosx+Bxsinx,代入原方程,可求得A=0,[*]即[*] 另外,由于3i不是特征根,所以另一方程的特解应具有形式y
2
*(x)=Ccos3x+Dsin3x,代入原方程,可得[*]D=0.这样,即得所解方程的通解为 y(x)=[*]+C
1
cosx+C
2
sinx,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/aMwRFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
设函数Y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
(2007年试题,17)求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值和最小值.
(2006年试题,18)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)|0≤x≤2,0≤y≤2},令U=(X+Y)2,试求EU与DU.
设A是3阶矩阵,b=[9,18,一18]T,方程组Ax=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,一2]T,其中k1,k2是任意常数,求A及A100.
当x→0时,下列3个无穷小按后面一个无穷小比前一个高阶的次序排列,正确的次序是()
求函数f(x)=的麦克劳林展开式.
求由曲线y=与直线y=a(0<a<1)以及x=0,x=1围成的平面图形(如图3—5的阴影部分)绕x轴旋转一周所成的旋转体的体积V(a).
求下列曲面的面积:(Ⅰ)半球面z=及旋转抛物面2az=x2+y2所围立体的表面S;(Ⅱ)锥面z=被柱面z2=2x所割下部分的曲面S.
随机试题
可出现强迫蹲位的疾病是
关税的正税包括______。
编制建筑单位工程概算时,若初步设计达到一定深度、建筑结构方案已经确定,适宜采用的编制方法是()。
下列公文中,不需要指明主送机关的是()
微生物:腐烂:病毒
electoralcollege
最大的五位数和最大的负五位数的和为()
Theideaisasaudaciousasitaltruistic:provideapersonallaptopcomputertoeveryschoolchild—particularlyinthepoorestp
设工程中有Forml、Form2两个窗体,要求单击Form2上的Commandl命令按钮,Form2就可以从屏幕上消失,下面的事件过程中不能实现此功能的是
Manyprivateinstitutionsofhighereducationaroundthecountryareindanger.Notallwillbesaved,andperhapsnotalldeser
最新回复
(
0
)