首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,Ax=0有基础解系ξ1=(1,3,0,2)T,ξ2=(1,2,-1,3)T;Bx=0有基础解系η1=(1,1,2,1)T,η2=(0,-3,1,+1)T. (Ⅰ)求矩阵A; (Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并
已知A,B均是2×4矩阵,Ax=0有基础解系ξ1=(1,3,0,2)T,ξ2=(1,2,-1,3)T;Bx=0有基础解系η1=(1,1,2,1)T,η2=(0,-3,1,+1)T. (Ⅰ)求矩阵A; (Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并
admin
2019-01-24
31
问题
已知A,B均是2×4矩阵,Ax=0有基础解系ξ
1
=(1,3,0,2)
T
,ξ
2
=(1,2,-1,3)
T
;Bx=0有基础解系η
1
=(1,1,2,1)
T
,η
2
=(0,-3,1,+1)
T
.
(Ⅰ)求矩阵A;
(Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并求该非零公共解.
选项
答案
(Ⅰ)记C=(ξ
1
,ξ
2
),则AC=A(ξ
1
,ξ
2
)=0,两边转置得C
T
A
T
=0. 所以矩阵A的行向量即AT的列向量是CTX一0的解,对CT作初等行变换,有 [*] 解得C
T
x=0的基础解系为α
1
=(3,-1,1,0)
T
,α
2
=(-5,1,0,1)
T
. 所以A=k
1
α
1
+k
2
α
2
=[*] 其中k
1
,k
2
是任意非零常数. (Ⅱ)设Ax=0和Bx=0有非零公共解,为δ,则δ可由ξ
1
,ξ
2
线性表出,也可由η
1
,η
2
线性表出, 设为 δ=x
1
ξ
1
+x
2
ξ
2
=-x
3
η
1
=x
4
η
4
, 得 x
1
ξ
1
+x
2
ξ
2
+x
3
η
1
+x
4
η
2
=(ξ
1
,ξ
2
,η
1
,η
2
)x=0. 对(ξ
1
,ξ
2
,η
1
,η
2
)作初等行变换,有 [*] 因为δ≠0,故(ξ
1
,ξ
2
,η
1
,η
2
)x=0有非零解,[*],故当a=-1时,(ξ
1
,ξ
2
,η
1
,η
2
)x=0有非零解为k(2,-1,-1,1)
T
,其中k是非零常数. δ=k(2ξ
1
-ξ
2
)=k(1,4,1,1)
T
(或δ=k(η
1
-η
2
)),其中k是非零常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/aC1RFFFM
0
考研数学一
相关试题推荐
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X).
考虑一个试验中,一位机械师从一批零件中逐个拿出零件,直到拿到符合要求的零件为止.拿出零件不符合要求记为F,符合要求记为S.(1)写出这一试验的样本空间;(2)记X=试验终止时取出的零件个数,写出随机变量X作为样本空间上的函数的表达式.
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设位于点(0,1)的质点A对于质点M的引力大小为(k>0为常数,r=|AM|).分别求下列运动过程中A对质点M的引力所作的功(如图9.65):(I)质点M沿曲线自B(2,0)运动到O(0,0);(Ⅱ)质点M在圆x2+y2=22上由B点沿逆时针方向运动
设(X,Y)的联合概率密度为f(x,y)=.求:(1)(X,Y)的边缘密度函数;(2)Z=2X—Y的密度函数.
设f(x)为连续函数,证明:∫0π(sinx)dx=∫0πf(sinx)dx=π∫0f(sinx)dx;
对于随机变量X1,X2,…,Xn,下列说法不正确的是().
设随机变量X,Y相互独立且都服从N(μ,σ2)分布,令Z=max{X,Y},求E(Z).
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
计算n阶行列式:Dn==_______.
随机试题
有关丁卡因的特点,以下说法正确的是()
该患者最可能的病因是要确诊病因,最简便的影像学检查是
A.限制钠盐B.限制蛋白质摄入C.低糖低脂饮食D.多喝肉汤、鸡汤E.禁食肝性脑病应()
营业推广
按照信用状况分类,可以把证券分为()。Ⅰ.担保债Ⅱ.利率债Ⅲ.信用债Ⅳ.抵押债
【2014广西】从“人是一个生物的存在”这个角度建立教育心理学体系的心理学家是()。
共和行政
Socialsciencehasweighedinonthe"tigermom"debate,anditlookslikeeveryoneisright:Bothover-protectiveandlaid-back
程序中的注释是为了提高可读性而加入的,它不影响程序实现的功能。编译程序在(9)阶段删除掉源程序中的注释。
(66)Prosperousalumnihelpedmake2006arecordedfund-raisingyearforcollegesanduniversities,whichhauledin$28billion—a
最新回复
(
0
)