首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
admin
2017-10-21
14
问题
设α
1
,α
2
,…,α
s
是n维向量组,r(α
1
,α
2
,…,α
s
)=r,则( )不正确.
选项
A、如果r=n,则任何n维阳量都可用α
1
,α
2
,…,α
s
线性表示.
B、如果任何n维向量都可用α
1
,α
2
,…,α
s
线性表示,则r=n.
C、如果r=s,则任何n维向量都可用α
1
,α
2
,…,α
s
唯一线性表示.
D、如果r<n,则存在n维向量不能用α
1
,α
2
,…,α
s
线性表示.
答案
C
解析
利用“用秩判断线性表示”的有关性质.
当r=n时,任何n维向量添加进α
1
,α
2
,…,α
s
时,秩不可能增大,从而(A)正确.
如果B的条件成立,则任何n维向量组β
1
β
2
,…,β
t
都可用α
1
,α
2
,…,α
s
线性表示,从而r(β
1
β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
).如果取β
1
β
2
,…,β
n
是一个n阶可逆矩阵的列向量组,则得n=r(β
1
β
2
,…,β
n
)≤r(α
1
,α
2
,…,α
s
)≤n,从而r(α
1
,α
2
,…,α
s
)=n,B正确.
D是B的逆否命题,也正确.
由排除法,得选项应该为C.下面分析为什么C不正确.
r=s只能说明α
1
,α
2
,…,α
s
线性无关,如果r<n,则用B的逆否命题知道存在n维向量不可用α
1
,α
2
,…,α
s
线性表示,因此C不正确.
转载请注明原文地址:https://jikaoti.com/ti/ZsSRFFFM
0
考研数学三
相关试题推荐
n维列向量组α1,…,αn—1线性无关,且与非零向量β正交.证明:α1,…,αn—1,β线性无关.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
设线性相关,则a=__________.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得∈f’(ξ)一f(ξ)=f(2)一2f(1).
设n阶矩阵A与对角矩阵合同,则A是().
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
求矩阵A=的特征值与特征向量.
随机试题
溶血性黄疸的临床表现特点?
A.冰片B.胆矾C.檀香D.安息香E.昆布易风化的饮片()。
《工程建设项目自行招标试行办法》规定,对招标人自行招标的能力作出了具体规定,内容不包括()。
基金公司合规管理部依照所规定的程序和方法,对行为对象可以开展的工作包括()。
假设其他因素不变,下列某一因素的变化,能够使社会总需求有所增加的是()。
目前,国家与安徽省颁布的与旅游服务相关的法规有()。
2000年~2005年,我国农村发电量占用电量比重最大的年份是()。根据上图,下列关于我国农村用电发电情况的表述,错误的一项是()。
我国《民法通则》第七十二条规定:“财产所有权的取得,不得违反法律规定。按照合同或者其他合法方式取得财产的,财产所有权从财产交付时起转移,法律另有规定或者当事人另有约定的除外。”请问:所有权的特征有哪些?
IP地址211.81.12.129/28的子网掩码可写为()。
HowtoSpentHisExtraTimeGiventhechoicebetweenspendinganeveningwithfriendsandtakingextratimeforhisschoolwo
最新回复
(
0
)