设三元非齐次线性方程组AX=b的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.

admin2018-09-20  55

问题 设三元非齐次线性方程组AX=b的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η12=[1,2,3]T,η23=[2,一1,1]T,η31=[0,2,0]T,求该非齐次方程的通解.

选项

答案因r(A)=1,故AX=b的通解应为k1ξ1+k2ξ2+η,其中对应齐次方程AX=0的解为 ξ1=(η12)一(η23)=[-1,3,2]T, ξ2=(η23)一(η31)=[2,一3,1]T. 因ξ1,ξ2线性无关,故ξ1,ξ2是AX=0的基础解系. 取AX=b的一个特解为 [*] 故AX=b的通解为 k1[一1,3,2]T+k2[2,一3,1]T+[0,1,0]T,k1,k2为任意常数.

解析
转载请注明原文地址:https://jikaoti.com/ti/ZWIRFFFM
0

最新回复(0)