首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
admin
2020-01-15
32
问题
α
1
,α
2
,α
3
是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Ax=b的通解x=( ).
选项
A、
B、
C、
D、
答案
C
解析
根据非齐次线性方程组解的结构,依次求出其导出组的基础解系和自身的一个特解即可.
根据线性方程组解的性质,可知
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)
是非齐次线性方程组Ax=b导出组Ax=0的一个解.因为R(A)=3,所以Ax=0的基础解系含4-3=1个解向量,而2α
1
-(α
2
+α
3
)=(2,3,4,5)
T
≠0,故是Ax=0的一个基础解系.因此Ax=b的通解为
α
1
+c(2α
1
-α
2
-α
3
)=(1,2,3,4)
T
+f(2,3,4,5)
T
,
即(C)正确.
对于其他几个选项,(A)项中
(1,1,1,1)
T
=α
1
-(α
2
+α
3
),
(B)项中
(0,1,2,3)
T
=α
2
+α
3
,
(D)项中
(3,4,5,6)
T
=3α
1
-2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以(A)、(B)、(D)均不正确.
故应选(C).
转载请注明原文地址:https://jikaoti.com/ti/ZICRFFFM
0
考研数学一
相关试题推荐
设Ω={(x,y,z)|x2+y2+z2≤R2,R>0),求三重积分
设n为正整数,.(Ⅰ)证明对于给定的n,F(x)有且仅有一个零(实)点,并且是正的,记该零点为an;(Ⅱ)证明幂级数处条件收敛,并求该幂级数的收敛域.
曲面S:,平面P:Ax+By+D=0.其中abc≠0,A,B,C不同时为零.讨论并回答下述问题:S是否存在与P平行的切平面,并请推导出存在这种切平面的充要条件.当存在时,请区分出是存在唯一一个,还是正好两个,还是可以多于两个.
设曲面积分其中S+为上半椭球面:(0≤z≤c)的上侧.其中Ω是上半椭球体;[img][/img]
微分方程的通解为______.
设4阶矩阵A=(α1,α2,α3,α4),已知齐次方程组AX=0的通解为c(1,一2,1,0)T,c任意.则下列选项中不对的是
定积分∫01arctan的值等于[img][/img]
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2.求矩阵βαT的特征值;
设函数φ(x)在(一∞,+∞)连续,是周期为1的周期函数,∫01(x)dx=0,函数f(x)在[0,1]有连续导数,求证:级数an2收敛.
的通解是______.
随机试题
提出需要层次不仅表现出“满足一上升”趋势,而且表现出“挫折一倒退”趋势的激励理论是
膀胱造影的方法不包括
新生儿患先天性肛门闭锁,应选用哪种摄影体位检查
下列选项中,适用于长针进针的是
当患者对诊治手段有质疑时,医生必须给予详细解释,在患者同意后才能实施诊治。这属于尊重患者的
PVC是以下什么的聚合物:
在出口贸易中,表示商品品质的方法有很多,为了明确责任,最好采用既凭样品买卖又凭规格买卖的方法。()
《四川省世界遗产保护条例》加强了对世界遗产建设项目的管理,明确规定()。
理想和信念总是相互依存。二者的关系是
Thelearningparadoxisattheheartof"productivefailure,"aphenomenonidentifiedbyManuKapur,aresearcherattheLearni
最新回复
(
0
)