首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,证明α1,α2,α3线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,证明α1,α2,α3线性无关.
admin
2016-10-20
31
问题
设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α满足Aα
3
=α
2
+α
3
,证明α
1
,α
2
,α
3
线性无关.
选项
答案
(1)(用定义) 据已知条件有Aα
1
=-α
1
,Aα
2
=α
2
,Aα
3
=α
2
+α
3
.设 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, ① 用A左乘①式的两端,并代人已知条件,有 -k
1
α
1
+k
2
α
2
+k
3
(α
2
+α
3
)=0. ② ①-②得 2k
1
α
1
-k
2
α
2
=0. 由于α
1
,α
2
是矩阵A不同特征值的特征向量,所以α
1
,α
2
线性无关,从而k
1
=0,k
3
=0. 将其代入①式得k
2
α
2
=0.因为α
2
是特征向量,必有α
2
≠0,从而k
2
=0. 因此,α
1
,α
2
,α
3
线性无关. (2)(用反证法) 设α
1
,α
2
,α
3
线性相关,由于α
1
,α
2
是矩阵A不同特征值的特征向量,所以 α
1
,α
2
必线性无关.从而α
3
可以由α
1
,α
2
线性表出.不妨设 α
3
=k
1
α
1
+k
2
α
2
, ① 用A左乘①式两端,并把Aα
3
=α
2
+α
3
,Aα
1
=-α
1
,Aα
2
=α
2
代入,得 α
2
+α
23
=-k
1
α
1
+k
2
α
2
. ② ①-②得 -α
2
=2k
1
α
1
. 由此得出α
1
,α
2
线性相关,与题设矛盾,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/YuxRFFFM
0
考研数学三
相关试题推荐
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
用文氏图和几何概率解释两个事件A与B相互独立的含义.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
利用格林公式,计算下列第二类曲线积分:
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
设f(x,y)=2x2+y2,求▽f(1,2),并用它来求等量线f(x,y)=6在点(1,2)处的切线方程.画出f(x,y)的等量线、切线与梯度向量的草图.
设A与B均为n,阶矩阵,且A与B合同,则().
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
计算下列各题:
随机试题
同样一瓶饮料在便利店、自动售货机、高级餐厅的售价都不一样。这种定价策略属于【】
Amansitsaloneataworkbench,startingatapieceofequipmentwithapuzzledfrown(皱眉).Hesays:"SoifIputredfourthere,
A.肝细胞灶状坏死B.肝细胞碎片坏死C.肝细胞桥接坏D.肝细胞大片坏死急性重型肝炎的病理特点是
患儿,女,7岁。发热、咳痰3天,烦躁,咳少量黄痰,气急,喉间痰鸣,面赤口渴,舌红苔黄,脉浮滑。血常规:WBC11.52×109/L,NE%75%。胸部正侧位:双肺纹理略增强。下列关于小儿肺炎抗生素使用原则,说法正确的是
步进电动机的主要特点有()。
无论会计估计变更影响当期,还是影响以后会计期间,其影响数均应当在变更当期予以确认。()
(1)赔偿损失(2)乔迁新居(3)起诉到法院(4)损坏玻璃(5)燃放鞭炮
Warmaybeanaturalexpressionofbiologicalinstinctsanddrivestowardaggressioninthehumanspecies.Natural(1)_____ofa
网络地址191.22.168.0子网掩码是()。
【B1】【B10】
最新回复
(
0
)