设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0. 证明2a∫-aag(x)e-x2dx≤∫-aag(x)dx∫-aae-x2dx.

admin2018-09-25  42

问题 设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0.
证明2a∫-aag(x)e-x2dx≤∫-aag(x)dx∫-aae-x2dx.

选项

答案因为当0≤x≤a时h’(x)≥0,h(x)单调增加;f(x)=e-x2在0≤x≤a时单调减少,所以不论0≤x≤y≤a还是0≤y≤x≤a,均有 [h(x)-h(x)](e-x2-e-y2)≤0, 即只要(x,y)∈D={(x,y)|0≤x≤a,0≤y≤a},有 h(x)e-x2+h(y)e-y2≤h(x)e-y2+h(y)e-x2. 于是有 [*] 2∫0ady∫0ah(x)e-x2dx≤2∫0ae-y2dy∫0ah(x)dx, 2a∫0ah(x)e-x2dx≤2∫0ae-y2dy∫0ah(x)dx. 又因为h(x)与e-x2都是偶函数,所以 a∫-aah(x)e-x2dx≤[*]∫-aae-y2dy∫-aah(x)dx, (*) 再以h(x)=g(x)+g(-x)代入,并注意到 ∫-aah(x)dx=∫-aa[g(x)+g(-x)]dx =∫-aag(x)dx+∫-aag(-x)dx =∫-aag(x)dx+∫-aag(u)(-du) =2∫-aag(x)dx, 同理,∫-aah(x)e-x2dx=2∫-aag(x)e-x2dx. 从而式(*)成为2a∫-aag(x)e-x2dx≤∫-aae-x2dx∫-aag(x)dx.证毕.

解析
转载请注明原文地址:https://jikaoti.com/ti/Yu2RFFFM
0

最新回复(0)