首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列幂级数的收敛域或收敛区间: (Ⅲ) anxn的收敛半径R=3;(只求收敛区间) (Ⅳ) ax(x一3)n,其中x=0时收敛,x=6时发散.
求下列幂级数的收敛域或收敛区间: (Ⅲ) anxn的收敛半径R=3;(只求收敛区间) (Ⅳ) ax(x一3)n,其中x=0时收敛,x=6时发散.
admin
2018-11-21
27
问题
求下列幂级数的收敛域或收敛区间:
(Ⅲ)
a
n
x
n
的收敛半径R=3;(只求收敛区间)
(Ⅳ)
ax(x一3)
n
,其中x=0时收敛,x=6时发散.
选项
答案
(Ⅰ)[*]有相同的收敛半径,可以用求收敛半径公式计算收敛半径.首先计算 [*] 所以R=1. 再考察两个端点,即x=±1时的敛散性.显然x=1,级数[*]是发散的.而x=一1时,[1*]单调递减,令f(x)=[*]<1,ln(1+x)>1,这就说明f’(x)<0,f(x)单调递减.所以[*]满足莱布尼兹判别法的两个条件,该级数收敛. 这样,即得结论:[*]x
n—1
的收敛域为[一1,1). (Ⅱ)这是缺项幂级数即幂级数的系数有无限多个为0(a
2n—1
=0,n=1,2,…),所以不能直接用求收敛半径公式求收敛半径R.一般有两种方法: 它是函数项级数,可直接用根值判别法.由于 [*] (Ⅲ)[*]na
n
(x一1)
n+1
=(x一1)
2
[[*]a
n
(x一1)
n
]’,由幂级数逐项求导保持收敛半径不变的特点知,[*]na
n
(x一1)
n+1
与[*]a
n
(x一1)
n
有相同的收敛半径R=3.因而其收敛区间为(一2,4). (Ⅳ)令t=x一3,考察[*]a
n
t
n
,由题设t=一3时它收敛→收敛半径R≥3,又t=3时其发散→R≤3.因此R=3,[*]a
n
t
n
的收敛域是[一3,3),原级数的收敛域是[0,6).
解析
转载请注明原文地址:https://jikaoti.com/ti/YR2RFFFM
0
考研数学一
相关试题推荐
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
(1)求级数的和函数S(x);(2)将S(x)展开为x一π/3的幂级数.
展开函数f(x)=为傅里叶级数.
将函数f(x)=展为麦克劳林级数是___________.
设A为m×s矩阵,B为s×n矩阵,使ABX=0与BX=0为同解方程组的充分条件是().
设函数f(r)(r>0)有二阶连续导数,并设u=f()满足div(gradu)=.求u的一般表达式.
向量v=xi+yi+zk穿过封闭圆锥曲面z2=x2+y2,0≤z≤h的流量等于___________.
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一]上有且仅有一个实根.
设常数λ>0,且级数()
设∑为椭球面的上半部分,点P(x,y,z)∈∑,∏为∑在点P处的切平面,p(x,y,z)为点O(0,0,0)到平面∏的距离,求
随机试题
2014年3月3日,杭州市有两人在地铁里打架斗殴。却被网上传成了“恐怖袭击”。3月4日上午,广州地铁5号线发生踩踏事故。多名乘客受轻伤。警方通报。事故原因是列车车尾两名少年在玩女性防狼喷剂,其刺激性气味导致乘客惊慌逃散。对于上述事件。你怎么看?
按组织目标的不同,可以把组织划分为()
直接接触药品的包材和容器,必须符合
设备安装工程的工期与费用的关系为( )。
Windows系统安装并启动后,由系统安排在桌面上的图标是()。
解释关于树形目录结构采用线性检索法的检索过程。
北方人不都爱吃面食,但南方人都不爱吃面食。如果已知上述第一个断定真,第二个断定假,则以下哪项据此不能确定真假?Ⅰ.北方人都爱吃面食,有的南方人也爱吃面食。Ⅱ.有的北方人爱吃面食,有的南方人不爱吃面食。Ⅲ.北方人都不爱吃面食,南方人都爱吃面食。
数字签名和手写签名的区别是
程序运行后,在窗体上单击鼠标,此时窗体不会接收到的事件是
Whatcanwedotostaywell?It’sagoodideatoexercise,eatfruit,vegetables,anddrinklotsofwater.Wealsoknowthingsn
最新回复
(
0
)