首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于A。的特征向量为ξ1=(0,1,1)T,求A.
设3阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于A。的特征向量为ξ1=(0,1,1)T,求A.
admin
2018-11-22
29
问题
设3阶实对称矩阵A的特征值为λ
1
=一1,λ
2
=λ
3
=1,对应于A。的特征向量为ξ
1
=(0,1,1)
T
,求A.
选项
答案
对应于λ
2
=2=λ
3
=1有两个线性无关的特征向量ξ
2
,ξ
3
,它们都与ξ
1
正交,故可取 [*]
解析
本题考查实对称矩阵的性质、齐次线性方程组的基础解系的求法及方阵对角化的应用.现再对几个有关问题加以说明:
(1)关于属于λ
2
=2=λ
3
=1的特征向量的求法:设
为属于λ
2
=2=λ
3
=1的特征向量,则由于实对称矩阵属于不同特征值的特征向量必正交的性质,有ξ
1
⊥X,即0x
1
+x
2
+x
3
=0,其系数矩阵为[0 1 1],它的秩为1,因此对应齐次线性方程含1个约束未知量,若取x
2
为约束未知量,则余下来的未知量x
1
和x
2
就是自由未知量,分别令x
1
=1,x
3
=0和x
1
=0,x
3
=一1,代入由自由未知量表示的通解x
2
=0x
1
一x
3
,即得基础解系;
ξ
2
和ξ
3
就是属于λ
2
=λ
3
=1的线性无关特征向量.不少考生由方程x
2
+x
3
=0只能求到一个非零解,常常求不出ξ
1
,其原因就在于没有掌握上述“先选取约束未知量,从而选取自由未知量,进而求出基础解系”的方法.
(2)如果令矩阵P=[ξ
1
ξ
2
ξ
3
],则P可逆(但不是正交阵),使P
—1
AP=D,于是可由A=PDP
—1
解出A来,但需要求一个逆矩阵,因此不如题解中的解法简单.
转载请注明原文地址:https://jikaoti.com/ti/YM2RFFFM
0
考研数学一
相关试题推荐
已知曲线L为圆x2+y2=a2在第一象限的部分,则=________。
[x]表示不超过x的最大整数,则=_______。
设f(t)连续且满足f(t)=cos2t+,求f(t)。
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
随机地向圆x2+y2=2x内投一点,该点落在任何区域内的概率与该区域的面积成正比,令X表示该点与原点的连线与x轴正半轴的夹角,求X的分布函数和概率密度。
设向量组α1=(a,0,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,(Ⅰ)β可由α1,α2,α3线性表出,且表示唯一;(Ⅱ)β不可由α1,α2,α3线性表出;
与α1=(1,2,3,-1)T,α2=(0,1,1,2)T,α3=(2,1,3,0)T都正交的单位向量是______。
现有四个向量组①(1,2,3)T,(3,-1,5)T,(0,4,-2)T,(1,3,0)T;②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
已知方程组有解,证明:方程组无解。
(90年)质点P沿着以AB为直径的圆周,从点A(1,2)运动到点B(3,4)的过程中受变力F作用(见图2.7),F的大小等于点P到原点O之间的距离,其方向垂直于线段Op且与y轴正向的夹角小于,求变力F对质点p所作的功.
随机试题
总量指标时间数列计算平均发展水平的方法有()
已知E(X)=2,E(Y)=2,E(XY)=4,则X,Y的协方差Coy(X,Y)___________.
由于输血后溶血反应而导致急性肾功能不全时,尿中出现的管型是
唇痈患者,起病3天,近2天有发热、头痛、食欲减退。血白细胞13乘以十的九次方/L,中性粒细胞85%,对此病人,若处理不当,可能导致
证券研究报告可以使用的信息来源不包括()。
营运资金是指()的余额。
按国家最新规定,国家建立城镇职工基本医疗保险制度,基本医疗保险费由用人单位和职工共同缴纳,其中职工缴纳费率一般为本人工资收入的()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
下列行为中,属于滥用代理权的有()
下列叙述中正确的是
最新回复
(
0
)