首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )
admin
2021-01-25
35
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( )
选项
A、λ
1
=0
B、λ
2
=0
C、λ
1
≠0
D、λ
2
≠0
答案
D
解析
由条件知α
1
,α
2
线性无关.向量组α
1
,A(α
1
+α
2
),即向量组α
1
,λ
1
α
1
+λ
2
α
2
,显然等价于向量组α
1
,λ
2
α
2
,当λ
2
=0时,α
1
,λ
2
α
2
线性相关,当λ
2
≠0时,α
1
,λ
2
α
2
线性无关,故向量组α
1
,A(α
1
+α
2
)线性无关
向量组α
1
,λ
2
α
2
线性无关
λ
2
≠0,只有选项D正确.
转载请注明原文地址:https://jikaoti.com/ti/YAaRFFFM
0
考研数学三
相关试题推荐
[2005年]设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为().
[2005年]设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为().
试判断级数的敛散性.
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)的表达式.
已知是矩阵的一个特征向量.试确定参数a,b及特征向量ξ所对应的特征值;
设矩阵其行列式|A|=-1.又A*有一个特征值λ0,属于λ0的一个特征向量为α=[-1,-1,1]T.求a,b,c和λ0的值.
[2014年]设随机变量X,Y的概率分布相同,X的概率分布为且X与Y的相关系数求(X,Y)的概率分布;
(93年)设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.
[2018年]设实二次型f(x1,x2,x3)=(x1-x2+x2)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)的规范形.
设{an}为正项数列,下列选项正确的是
随机试题
公共关系公司
特殊类型的溃疡是指
完带汤的适应证是萆薢分清饮的适应证是
患儿,7岁。浮肿1个月,查体腰腹下肢为甚,按之深陷难起,面色白,腰酸怕冷,尿淡而频,夜间尤甚,舌胖质淡,苔白,脉沉细。辨证为
灰口铸铁的性能主要取决于基体的性能和()的数量、形状、大小和分布状况。
青岛××电子显示器有限公司(370223××××)购买进口显示器元器件一批,货物从日本大阪起运,经韩国换装运输工具运至青岛。该批货物中的电视机用印刷电路板组件(ASSYBLUP;Bordeaux;法定计量单位:千克)和非片式固定电阻[R-METALOX
税率是对征税对象的征收比例或征收额度,有比率税率和定额税率等好几种。
()是一种符号化的机器语言。
PASSAGEONEWhydidthegirlplaybasketballoverandoveragain?Whyaretheflowersandcandlesbeingdismantled?
Katerefusedto______thecarkeystoherhusbanduntilhehadpromisedtowearhissafetybelt.
最新回复
(
0
)