首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
admin
2017-07-10
41
问题
设α
1
,α
2
……α
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
选项
答案
必要性:a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n.对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关.综上所述r(a
1
,a
2
,…,a
n
,b)=n.又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示.充分性:已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
,线性表示,即r(ε
1
,ε
2
,…,ε
n
) =n≤r(a
1
,a
2
,…,a
n
),又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n.综上,r(a
1
,a
2
,…,a
n
)=n.所以a
1
,a
2
,…,a
n
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/XuzRFFFM
0
考研数学二
相关试题推荐
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
证明:当x≥5时,2x>x2.
设,证明fˊ(x)在点x=0处连续.
证明函数y=sinx-x单调减少.
,证明你的结论。
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
随机试题
M:HiltonHotel.CanIhelpyou?W:Yes,【D1】______withabathfromOctober11toOctober14.M:Wehaveonedoubleroomav
患者,女性,35岁。弯腰劳动后突然出现剧烈腰痛,不能活动,卧床休息后疼痛不缓解。如果出现坐骨神经放射性疼痛,最可能诊断是
二手手机店老板甲提供摩托车,让乙和丙配合去飞车抢夺手机,然后将抢来的手机在其店内销售,乙、丙一共抢得手机30多部,共卖得赃款5万多元。下列选项错误的是:()
设在经济技术开发区的某生产性外商投资企业,1997年8月投产,经营期限20年,当年获利。经主管税务机关批准,税收优惠政策的执行时间从1998年开始计算,从2002年开始,该企业均被认定为先进技术企业。有关年度应纳税所得额情况见下表。
根据企业所得税的相关规定,下列所得按转让货物或资产的企业所在地确定所得来源地的是()。
根据以下情境材料,回答下列问题。某日傍晚6时左右,民警庄某在卡点发现要追捕的抢劫犯罪嫌疑人邢某驾摩托车驶来,喝令邢某停车。听到喊声,邢某不但没有停车,反而加大油门继续行驶。庄某紧追不放,到镇里一个菜市场处,由于人群聚集,邢某停车欲逃,庄某拔出手枪
A、 B、 C、 D、 B
以下关于信息和数据的叙述中,不正确的是()。
以下不属于对象的基本特点的是
RenownedChinesedirectorZhangYimou’slatestfilm,RidingAloneforThousandsofMiles,heldatrialpremiereinthesouthern
最新回复
(
0
)