首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
admin
2019-05-11
66
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
.①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 Q
-1
AQ=Q
T
AQ=[*] 于是A的特征值为1,1,0,并且Q的第3列=[*](1,0,1)
T
是A的特征值为0的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式x
1
+x
3
=0的非零解. α
2
=(1,0,-1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为l的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/XcLRFFFM
0
考研数学二
相关试题推荐
设D是由χ≥0,y≥χ与χ2+(y-b)2≤b2,χ2+(y-a)2≥a2(0<a<b)所围成的平面区域,求χydχdy.
设a1<a2<…<an,且函数f(χ)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=f(n)(ξ).
设f(χ)在χ=χ0的邻域内连续,在χ=χ0的去心邻域内可导,且f′(χ)=M.证明:f′(χ0)=M.
设=0且F可微,证明:=z-χy.
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=|E-3A|=0,则|B-1+2E|=_______.
微分方程y′-χe-y+=0的通解为_______.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
求f(χ)=的间断点并分类.
随机试题
根据产品的商业寿命周期分阶段确定不同的销售价格的定价策略是()
妊娠期妇女可拔牙的时间段为
公开发行可转换为公司股票的公司债券的条件之一是,股份有限公司的净资产不低于人民币()元,有限责任公司的净资产不低于人民币()万元。
证券登记结算机构对每一营业日成交的证券与价格分别予以轧抵,计算证券和资金的应收或应付净额的处理过程,被称为()。
北宋第一个致全力于词作的文人是()。
幼儿美育是社会精神文明建设的组成部分。()
公安教育与科研工作是为公安队伍提供人才培养和科学技术保障的专门工作。()
局域网从介质访问控制方法的角度可以分成()两类。
检索职工表中工资大于800元的职工号,正确的命令是
有如下程序:Functionfun(ByValsumAsInteger)AsIntegerDimkAsIntegerk=1num=Abs(num)DoWhilesumk=k*(humMod10):sum=sum\10L
最新回复
(
0
)