首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有 ∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,求Q(x,y)。
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有 ∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,求Q(x,y)。
admin
2018-05-25
61
问题
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫
L
2xydx+Q(x,y)dy与路径无关,并且对任意t恒有
∫
(0,0)
(t,1)
2xydx+Q(x,y)dy=∫
(0,0)
(t,1)
2xydx+Q(x,y)dy,求Q(x,y)。
选项
答案
由于曲线积分∫
L
Pdx+Qdy与路径无关,则[*](其中P,Q有连续偏导数),即 [*] 对x积分得Q(x,y)=x
2
+φ(y),其中φ(y)待定。对于任意的t,则有 ∫
(0,0)
(t,1)
2xydx+[x
2
+φ(y)]dy=∫
(0,0)
(t,1)
2xydx+[x
2
+φ(y)]dy。 (*) 下面由此等式求φ(y)。 由于 2xydx+[x
2
+φ(y)]dy=ydx
2
+x
2
dy+φ(y)dy =d(x
2
y)+d(∫
0
y
φ(s)ds)=d(x
2
y+∫
0
y
φ(s)ds)。 于是由(*)式得 (x
2
y+∫
0
y
φ(s)ds)|
(0,0)
(t,1)
=(x
2
y+∫
0
y
φ(s)ds)|
(0,0)
(t,1)
, 即t
2
+∫
0
1
φ(s)dx=t+∫
0
t
φ(s)ds,亦即t
2
=t+∫
1
t
φ(s)dx。求导得2t=1+φ(t),即φ(t)=2t一1。 因此Q(x,y)=x
2
+2y一1。
解析
转载请注明原文地址:https://jikaoti.com/ti/Wy2RFFFM
0
考研数学一
相关试题推荐
设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.
设α=(1,-1,α)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是_______.
设A=(1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
已知平面上三条不同直线的方程分别为l1=aχ+2by+3c=0,l2=bχ+2cy+3a=0,l3=cχ+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
设在一个空间直角坐标系中,有3张平面的方程:P1:χ+2y+3z=3;P2:2χ一2y+2az=0;P3:χ-ay+z=b.已知它们两两相交于3条互相平行的不同直线,求a,b应该满足的条件.
设1≤a<b,函数f(χ)=χln2χ,求证f(χ)满足不等式(Ⅰ)0<f〞(χ)<2(χ>1).(Ⅱ)f(a)+f(b)-2f(b-a)2.
设曲线厂的极坐标方程是r=eθ(0≤0≤π),则г上与直线y+χ=1平行的切线的直角坐标方程是_______.
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_________
设函数,若曲线积分∫LPdx+Qdy在区域D={(x,y)|y>0"上与路径无关,求参数λ.
求u=x2+y2+z2在=1上的最小值。
随机试题
20世纪80年代以来,西方国家占主导地位的行政管理学主要有【】
反病毒软件________。
Thepicture______onthewallispaintedbymynephew.
鸡白痢检疫最常用的方法是
国家从全社会利益和宏观经济发展角度出发,推动土地的转移,限制某类土地的利用,以下说法正确的是()。
根据税收征收管理法律制度的规定,纳税人发生偷税行为时,税务机关可以行使的权力有()。(2007年)
下列各项中,应按“产权转移书据”税目征收印花税的有()。
对于需求价格弹性分别为1,1.5,0.8,2.0,1.25的甲、乙、丙、丁、戊五种商品,厂商可以通过降低价格增加收入的是()。
陶行知将杜威的教育思想与当时中国实际相结合,提出了“教学做合一”思想,这对我国教育心理学的发展产生了深远影响。()
【2014-3】以下判断不能说明教育相对独立性的是()。
最新回复
(
0
)